

CERTIFICATE OF AUTHENTICITY

THIS IS TO CERTIFY THAT THE FOLLOWING ELECTRONIC RECORDS ARE TRUE AND ACCURATE REPRODUCTIONS OF THE ORIGINAL RECORDS OF JAMES CITY COUNTY GENERAL SERVICES DEPARTMENT- STORMWATER DIVISION; WERE SCANNED IN THE REGULAR COURSE OF BUSINESS PURSUANT TO GUIDELINES ESTABLISHED BY THE LIBRARY OF VIRGINIA AND ARCHIVES; AND HAVE BEEN VERIFIED IN THE CUSTODY OF THE INDIVIDUAL LISTED BELOW.

BMP NUMBER: CC-014

DATE VERIFIED: March 21, 2012

QUALITY ASSURANCE TECHNICIAN:

Leah Hardenbergh

Leah Hardenbugh

LOCATION: WILLIAMSBURG, VIRGINIA

Stormwater Division

MEMORANDUM

DATE:	March 11, 2010
TO:	Michael J. Gillis, Virginia Correctional Enterprises Document Management Services
FROM:	Jo Anna Ripley, Stormwater
PO:	270712
RE:	Files Approved for Scanning

General File ID or BMP ID: CC014

PIN: 4910100006

Subdivision, Tract, Business or Owner	
Name (if known).	

Name (if known):				Kingspo	int	
Property Description	•			Parcel B	Section 5	
Site Address:				110A Ov	verlook Drive	
(For Internal use only)	Box	12		Drawer:	7	
Agreements: (in file as of scan date)	Ν		Book or Doc#:			Page:

Comments Private Dam

CCOIM

Contents for Stormwater Management Facilities As-built Files

Each file is to contain:

- 1. As-built plan
- 2. Completed construction certification
- 3. Construction Plan
- 4. Design Calculations
- S Watershed Map
- 6. Maintenance Agreement
- 7. Correspondence with owners
- 8) Inspection Records
- 9. Enforcement Actions

Prudential McCardle

FACSIMILE TRANSMITTAL SHEET PAGE 1 OF DATE: 11-4-04 TO: IMA C FAX#(757) 259-4032 PHONE (757) 253-6639 FROM: 176 Providing 1201 Jamestown Rd., Williamsburg, VA 23185 (757) 253-5686 FAX: (757) 229-7227 Excep-811 Richmond Rd., Williamsburg, VA 23185 (757) 229-6151 tional FAX: (757) 220-5630 3449 John Tyler Hwy, Williamsburg, VA 23185 (757) 220-9500 Service. FAX: (757) 220-0703 758 McGuire Place, Newport News, VA 23601 (757) 596-2000 Achieving FAX: (757) 599-6808 7405 Richmond Road, Williamsburg, VA 23188 188 (757) 565-4696 FAX: (757) 565-4727 Excep-REMARKS: tional Results. 104 Note: If you do not receive all pages as stated, please call us at the office 7 ANI indicated If the reader of this message is not the intended recipient, or the employee or agent responsible to the intended or again responsible to the mander recipient, you are hereby notified that any dissemination , distribution or copying of this communication is strictly prohibited. If you have received this communica tion in error, immediately notify us by telephone and return the original measage to us at the designated sender address via the U.S. Postal Service. **Prudential McCardle Realty** Independently Owned and Operated

LPO - Tran · Nom letter shall be allressed to all applicable owners/intirest in dam. · Laffers from (sunt has caused temperately to fall on them unjust G PARDEN JUST MR. TAN Asking for up onted reports addressing to all applicable ONNErs. (NO) TOBLIGAT way and 1997 Jocuments before SNOAT TONON (owner ship was 1. CANITBEDUNE? 2. How TO DO 17? Very desparate conservermt? POR?

February 23, 2001

Benson Dexter 6 Firethorn Place Williamsburg, Va. 23185

Re: Kingspoint Subdivision Large Lake (County ID No. CC 014) East Side/Overlook Drive Vicinity

Dear Mr. Dexter:

In response to your recent request and a joint visit to the site on February 20th 2001, the Environmental Division is forwarding the following information to you relative to the above referenced facility.

The subject facility is an older, large lake impoundment which provides for stormwater quantity control. It has very limited stormwater quality control aspects. The facility has a high earthen embankment which bridges across a narrow, deep valley and contains a brick-box riser structure with a corrugated metal outlet barrel. The facility suffered considerable downstream embankment and outlet barrel damage (but not a complete failure) as a result of Hurricane Floyd in September 1999. Damage, as observed, included severe surface erosion and a slope/bank (slide) failure on the downstream embankment in the vicinity above and around the outlet barrel. The downstream portion of the outlet barrel has completely separated from an existing junction box which was located about midway through the downstream embankment.

It is presumed, pending further detailed investigation, that the cause of the partial failure was due to the following four (4) causes, either working separately or in conjunction with each other:

- 1) Storm runoff from the paved channel on the west abutment toe (adjacent lot and access roadway) caused accelerated surface erosion of the embankment in the vicinity of the junction box, the outlet barrel and on downstream portions of the embankment.
- 2) Seepage and piping along the outlet barrel due to internal corrosion of the corrugated metal pipe (CMP). Flow through the pipe may have found its way into small holes in the walls of the pipe and subsequently into the pipe's backfill material. A seepage condition of this kind can result in internal and subsurface erosion within the embankment and can cause piping failure. Piping is well documented to be a leading cause of dam failures.

- 3) Loss of compaction on the engineered soil embankment due to the presence of tree (root mats) or improper construction. Compaction of earthen embankment soil is an essential component as it increases the strength of the fill and its resistance to erosion from surface runoff.
- 4) A considerable amount of older, established trees (pines), shrubs and woody vegetation were present on the downstream embankment. Saturated roots mats combined with high wind can cause trees to overtop during storm events and accelerate soil erosion and embankment failure.

As such, immediate repair of the damage is necessary. The integrity of the dam embankment is now questionable from a structural and stormwater control perspective. Based on our inspection, the repair plan should generally consist of, but is not limited to, the following items. Any repair plans for the structure should strive to eliminate or reduce the causes as outlined above.

Recommended Repair Plan:

- 1. Clear and remove existing debris and unsuitable soils from the repair (slide) area.
- 2. Replace embankment fill material with acceptable soil fill, properly compacted. New fill shall be properly keyed into the existing embankment soils.
- 3. Clean and repair the existing brick box riser structure as necessary.
- 4. Reline the existing CMP from the riser structure to the repair (slide) area. Grout the void space between the new culvert and the host pipe. Also, pressure inject grout into any eroded areas along the pipe barrel to the greatest extent possible.
- 5. Similar to the previous design, a well-anchored access structure (manhole or inlet) will be necessary at the end of the reline pipe where the outlet barrel changes direction. Provide adequate means to convey surface drainage from the west abutment paved toe channel into the access structure or to the base (toe) of embankment without causing surface erosion.
- 6. Provide a new outlet barrel from the new access structure to the base (toe) of embankment. Reinforced concrete pipe is recommended for this application, although other pipe material types may be considered if adequately designed for hydraulic and structural conditions.
- 7. Provide adequate outlet protection (riprap) at the outfall end of the new barrel.
- 8. Stabilize all disturbed areas with seed and mulch. Any embankment slopes steeper than 3H:1V would require erosion control matting.
- 9. Based on County and State requirements, trees, shrubs and woody vegetation are not permitted to grow on any part of pond embankments constructed using engineered (compacted) fills; therefore all trees present on the downstream embankment should be cut flush to or below ground level and be maintained in that fashion as to not disturb root systems that may already be extensive. Efforts should then be made to reduce tree re-growth and establish a low-maintenance grass covering.
- 10. Adequate mechanisms would need to be in place from applicable property owners to access and repair the facility.

County Permit and Review Requirements:

Since it appears that access and repair work activities would result in 2,500 square feet or more of land-disturbance, the repair plan for the facility would be subject to the plan of development review process under the provisions of the Chapter 23 Chesapeake Bay Preservation and Chapter 8 Erosion and Sediment Control ordinances of James City County. Review of this plan would be mainly through the Environmental Division, since it would appear to only involve land-disturbance activity consisting of installation of erosion and sediment controls and repair activities to an existing structure.

Since the repair plan would involve work on an engineered embankment, the plan <u>should</u> be prepared by a qualified professional engineer who is qualified to prepare plans, details, sequences of construction, computations (hydraulic, structural, etc.) and specifications as necessary for dam construction and in accordance with the requirements of the County ordinances. *Note: Based on available County mapping, it appears that Resource Protection Area (RPA) is located in the surrounding vicinity downstream of the repair area. There will be distinct restrictions on impact to RPA*.

Over the past year, we have waived land-disturbance permit bond and application fee requirements for Hurricane Floyd damage-related projects that involved repair to stormwater management facilities. As time passes, we have also become more discretionary as to whether projects should still fall under that category. Based on our review of this particular project, our division would waive bonding and application fees associated with the land-disturbance permit process. However, a land-disturbance permit would still be required. Also, although not required, it is highly recommended that repairs made to the facility be certified by a registered land surveyor and/or engineer under the current County Record Drawing and Construction Certification process to ensure work is performed in accordance with the project plans and specifications.

We fully support repair of this facility and are here to assist you at any time. If you have any additional questions or comments regarding this issue, please contact me at 757-253-6639 or Darryl Cook at 757-253-6673.

Sincerely,

Scott J. Thomas, P.E. Civil Engineer Environmental Division

SJT/sjt

File: SWMProg\Education\Subdivisions\Kingspoint.let1

Benson fer Det 2/14/07 CALL 969) (Built 1969)

108 Overlook Dr.

DEVELOPMENT MANAGEMENT

 101-E
 MOUNTS
 BAY
 ROAD,
 P.O. Box
 8784,
 WILLIAMSBURG,
 VIRGINIA
 23187-8784

 (757)
 253-6671
 Fax:
 (757)
 253-6850
 E-MAIL: devtman@james-city.va.us

CODE COMPLIANCE (757) 253-6626 codecomp@james-city.va.us ENVIRONMENTAL DIVISION (757) 253-6670 environ@james-city.va.us PLANNING (757) 253-6685 planning@james-city.va.us County Engineer (757) 253-6678 Integrated Pest Management (757) 259-4116

February 23, 2001

Benson Dexter 6 Firethorn Place Williamsburg, Va. 23185

Re: Kingspoint Subdivision Large Lake (County ID No. CC 014) East Side/Overlook Drive Vicinity

Dear Mr. Dexter:

In response to your recent request and a joint visit to the site on February 20th 2001, the Environmental Division is forwarding the following information to you relative to the above referenced facility.

• The subject facility is an older, large lake impoundment which provides for stormwater quantity control. It has very limited stormwater quality control aspects. The facility has a high earthen embankment which bridges across a narrow, deep valley and contains a brick-box riser structure with a corrugated metal outlet barrel. The facility suffered considerable downstream embankment and outlet barrel damage (but not a complete failure) as a result of Hurricane Floyd in September 1999. Damage, as observed, included severe surface erosion and a slope/bank (slide) failure on the downstream embankment in the vicinity above and around the outlet barrel. The downstream portion of the outlet barrel has completely separated from an existing junction box which was located about midway through the downstream embankment.

It is presumed, pending further detailed investigation, that the cause of the partial failure was due to the following four (4) causes, either working separately or in conjunction with each other:

- 1) Storm runoff from the paved channel on the west abutment toe (adjacent lot and access roadway) caused accelerated surface erosion of the embankment in the vicinity of the junction box, the outlet barrel and on downstream portions of the embankment.
- 2) Seepage and piping along the outlet barrel due to internal corrosion of the corrugated metal pipe (CMP). Flow through the pipe may have found its way into small holes in the walls of the pipe and subsequently into the pipe's backfill material. A seepage condition of this kind can result in internal and subsurface erosion within the embankment and can cause piping failure. Piping is well documented to be a leading cause of dam failures.

- 3) Loss of compaction on the engineered soil embankment due to the presence of tree (root mats) or improper construction. Compaction of earthen embankment soil is an essential component as it increases the strength of the fill and its resistance to erosion from surface runoff.
- 4) A considerable amount of older, established trees (pines), shrubs and woody vegetation were present on the downstream embankment. Saturated roots mats combined with high wind can cause trees to overtop during storm events and accelerate soil erosion and embankment failure.

As such, immediate repair of the damage is necessary. The integrity of the dam embankment is now questionable from a structural and stormwater control perspective. Based on our inspection, the repair plan should generally consist of, but is not limited to, the following items. Any repair plans for the structure should strive to eliminate or reduce the causes as outlined above.

Recommended Repair Plan:

- 1. Clear and remove existing debris and unsuitable soils from the repair (slide) area.
- 2. Replace embankment fill material with acceptable soil fill, properly compacted. New fill shall be properly keyed into the existing embankment soils.
- 3. Clean and repair the existing brick box riser structure as necessary.
- 4. Reline the existing CMP from the riser structure to the repair (slide) area. Grout the void space between the new culvert and the host pipe. Also, pressure inject grout into any eroded areasalong the pipe barrel to the greatest extent possible.
- 5. Similar to the previous design, a well-anchored access structure (manhole or inlet) will be necessary at the end of the reline pipe where the outlet barrel changes direction. Provide adequate means to convey surface drainage from the west abutment paved toe channel into the access structure or to the base (toe) of embankment without causing surface erosion.
- 6. Provide a new outlet barrel from the new access structure to the base (toe) of embankment. Reinforced concrete pipe is recommended for this application, although other pipe material types may be considered if adequately designed for hydraulic and structural conditions.
- 7. Provide adequate outlet protection (riprap) at the outfall end of the new barrel.
- 8. Stabilize all disturbed areas with seed and mulch. Any embankment slopes steeper than 3H:1V would require erosion control matting.
- 9. Based on County and State requirements, trees, shrubs and woody vegetation are not permitted to grow on any part of pond embankments constructed using engineered (compacted) fills; therefore all trees present on the downstream embankment should be cut flush to or below ground level and be maintained in that fashion as to not disturb root systems that may already be extensive. Efforts should then be made to reduce tree re-growth and establish a low-maintenance grass covering.
- 10. Adequate mechanisms would need to be in place from applicable property owners to access and repair the facility.

County Permit and Review Requirements:

Since it appears that access and repair work activities would result in 2,500 square feet or more of land-disturbance, the repair plan for the facility would be subject to the plan of development review process under the provisions of the Chapter 23 Chesapeake Bay Preservation and Chapter 8 Erosion and Sediment Control ordinances of James City County. Review of this plan would be mainly through the Environmental Division, since it would appear to only involve land-disturbance activity consisting of installation of erosion and sediment controls and repair activities to an existing structure.

Since the repair plan would involve work on an engineered embankment, the plan <u>should</u> be prepared by a qualified professional engineer who is qualified to prepare plans, details, sequences of construction, computations (hydraulic, structural, etc.) and specifications as necessary for dam construction and in accordance with the requirements of the County ordinances. *Note: Based on available County mapping, it appears that Resource Protection Area (RPA) is located in the surrounding vicinity downstream of the repair area. There will be distinct restrictions on impact to RPA*.

Over the past year, we have waived land-disturbance permit bond and application fee requirements for Hurricane Floyd damage-related projects that involved repair to stormwater management facilities. As time passes, we have also become more discretionary as to whether projects should still fall under that category. Based on our review of this particular project, our division would waive bonding and application fees associated with the land-disturbance permit process. However, a land-disturbance permit would still be required. Also, although not required, it is highly recommended that repairs made to the facility be certified by a registered land surveyor and/or engineer under the current County Record Drawing and Construction Certification process to ensure work is performed in accordance with the project plans and specifications.

We fully support repair of this facility and are here to assist you at any time. If you have any additional questions or comments regarding this issue, please contact me at 757-253-6639 or Darryl Cook at 757-253-6673.

Sincerely. Thomas

Scott J. Thomas, P.E. Civil Engineer Environmental Division

SJT/sjt

File: SWMProg\Education\Subdivisions\Kingspoint.let1

City Stormwater Management / BMP Inspection Report Detention and Retention Pond Facilities
Database Inventory No. (if known): <u>CCOI4</u> Name of Facility: <u>KINGSPONTE SUBDIVISION LARGE</u> BMP No.: of Date: <u>OZ/ZO/01</u>
Location: I O OVERLOOK DRIVE (GPIN 49/0250026 \$ 49/0100006)
Name of Owner:
Inspector:
Type of Facility: Wet POND
Weather Conditions: Warm, Mid 50's
If an inspection item is not applicable, mark NA, otherwise mark the appropriate column.

O.K. - The item checked is in adequate condition and the maintenance program is currently satisfactory. Routine - The item checked requires attention, but does not present an immediate threat to the function of the BMP. Urgent - The item checked requires immediate attention to keep the BMP operational and prevent damage to the facility.

Provide an explanation and details in the comment column, if routine or urgent are marked.

Facility Item	0.K.	Routine	Urgent	Comments
Embankments and Side Slopes:		LARGE, HIGH	EMBANKA	DENT
Grass Height	×			
Vegetation Condition	\times			•
Tree Growth		*	\star	LARGE Trees & PINES ON TOP & DIS EMBANKMENT
Erosion		\checkmark	\star	D'S SUDE FAILURE & END BARREL.
Trash & Debris	\star	2		
Seepage		*		SEEPAGE NOTED D/S LEFT (EAST) TOE WITH NAT. GROUND.
Fencing or Benches	\prec			
Interior Landscaping/	Planted Are	as: None 🗆 Consti	ructed Wetland/Sha	llow Marsh 🛛 Naturally Established Vegetation
Vegetated Conditions				LARGE PERM. POOL.
Trash & Debris				
Floating Material				
Erosion				
Sediment				
Dead Plant				
Aesthetics				
Other				
NOTE: INH	methon	livect result of	request by	+ HO members who may want to
Rép	air th	ne tacility, wi	hich was d	tamaged during Hurr. Floyd Sept 1999

'Facility Item	О.К.	Routine	Urgent	Comments
water Pools	rmanent Pool	(Retention Basin)	allow Marsh (Dete	ention Basin) 🗇 None (Detention Basin)
Shoreline Erosion	\times			NATURAL VEG.
Algae	\times			None observed in Winter.
Frash & Debris	\star			
Sediment	\star			
Aesthetics	\times			
Other				
Inflow Stuctures (Desc	ribe Location	ns): DID NOT	OBSERVE.	CHANNELS : Storm Drain INFLOWS.
Condition of Structure	×		<u></u>	Annear adequate based
Erosion	×			on driveby " walk at back
Frash and Debris	×			end of lake : conhantment
Sediment	×			area. (was not scope of
Aesthetics	X		······	Insall from)
 Dther				
Principal Flow Control	Structure - 1	Intake, Riser, etc. (Desci	ribe Location):	Brick Box w/ rect. Slots.
Condition of Structure	\prec	*		Old structure but relatively clean
Corrosion	×			Bricks are discolored.
Frash and Debris	\times	×		Minor.
Sediment	\times			
Aesthetics	*		<u> </u>	Appears ok for 298.
Other				
Principal Outlet Struct	ure - Barrel,	Conduit, etc. : 36	"CMP B	ARREL.
Condition of Structure			X	DIS Barral's Embandment FAILVRE
Settlement			X	Erosion withing back into DIS
Frash & Debris				EMBANKMENT ALMOST 1/2.
Sediment			×	Sovere Potential for failure
Erosion				uplace convertive action taken
				(control active active in the second)
Emergency Snillway (C	verflow).	Alara Re	<u> </u>	Conc. VUNCTION DUX 415p/acturi
Vegetation		ryone rec	387 6.	
ining		·		Alana
Frosion				Alex 10
Frash & Debris	 			A/201
Other				×/m/P
	L			1 I WW.

Facility Item О.К. P-Routine Urgent Comments Nuisance Type Conditions: Mosquito Breeding \prec \prec Animal Burrows Graffiti Other WRODED AREA ROADS & SF LOTS. Surrounding Perimeter Conditions: Land Uses Vegetation Trash & Debris Aesthetics EASEMENT thru 110 Overlauk Access /Maintenance \succ DrIVE to TAN PARCEL. ADEQUATE IN FIELD. Roads or Paths RPA Downstream. Other **Remarks:** P LARGE Trees ON TOP & D/S EMBANK NEED REMOVED. D D/S SCOPE EMBANKMENT & BARREL FAILURE. NEEDS IMMEDIATE CORRELTIVE ACTION. REMAINING EMBANKMENT THREATENED. PONTLET BARREL -> INTERIOR CORRUSION (LEAKAGE. \triangleright Potential LAND Problems with Access for repair plan. \triangleright N BARREL / SLOPE FAILURE ARE A CMP - INTERIOR POOL CORROSION. 36" CMP CMP 2- PISLODGED ? NON FUNCT. CONC. JUNCTION Berd Box, 121551 (BARREL - SLOPE FAILURE 1 Overall Environmental Division Internal Rating: FAILURE APPEARED TO BE LAUSED BY SUKF. EROSION FROM WES CHANNEL : BARREL SEEPAGE DUE TO PIPE CORROSION. NOTE : une P.E. 02 Date: Signature: OC Environmental DIV. Title:

SWMProg\BMP\CoInspProg\DetRet.wpd

WATERSHED	CC	MAINTENANCE PLAN	No	CTRL STRUC DESC	Brick Riser E	
BMP ID NO	014	SITE AREA acre	1	CTRL STRUC SIZE inches		
PLAN NO		LAND USE	SF Residential	OTLT BARRL DESC	CMP	
TAX PARCEL		old BMP TYP	Wet Pond	OTLT BARRL SIZE inch	36	
PIN NO	4910100006	JCC BMP CODE				
CONSTRUCTION DATE		POINT VALUE		EMERG SPILLWAY	No	
PROJECT NAME	Kingspoint Subdiv Large BMF	⁹ Lake		DESIGN HW ELEV		
FACILITY LOCATION	110 Overlook Drive (Lot 26 Se	ec 5)		PERM POOL ELEV		
CITY-STATE	Williamsburg, Va. 23185	SVC DRAIN AREA acres		2-YR OUTFLOW cfs	0.00	
CURRENT OWNER				10-YR OUTFLOW cfs	0.00	
OWNER ADDRESS				REC DRAWING	No	
OWNER ADDRESS 2		SERVICE AREA DESCRI	SF Residential Lot	s, Roads & Woods		
CITY-STATE-ZIP CODE		IMPERV AREA acres	0	CONSTR CERTI	No	
OWNER PHONE		RECV STREAM	UT of Halfway Cre	ek		
MAINT AGREEMENT	No	EXT DET-WQ-CTRL	No	LAST INSP DATE	2/20/2001	
EMERG ACTION PLAN	No	WTR QUAL VOL acre-ft CHAN PROT CTRL CHAN PROT VOL acre-ft	No	INTERNAL RATING MISC/COMMENTS Failure d/s end barrel and c	1 1/s	
Get Last BMP No		SW/FLOOD CONTROL	Yes	embankment slope. Principal spill still		
	Return to Menu	GEOTECH REPORT	No	iunci.		

WATERSHED	CC	MAINTENANCE PLAN	No	CTRL STRUC DESC	Brick Riser B
BMP ID NO	014	SITE AREA acre		CTRL STRUC SIZE inches	
PLAN NO		LAND USE	SF Residential	OTLT BARRL DESC	CMP
TAX PARCEL	S S 档案。	old BMP TYP	Private Dam/Lake	OTLT BARRL SIZE inch	36
PIN NO	4910100006	JCC BMP CODE			
CONSTRUCTION DATE	Rank de la companya d	POINT VALUE		EMERG SPILLWAY	No
PROJECT NAME	Kingspoint Large Lake (Private)			DESIGN HW ELEV	
FACILITY LOCATION	110 Overlook Drive (Lot 26 Sec 5)			PERM POOL ELEV	
CITY-STATE	Williamsburg, Va. 23185	SVC DRAIN AREA acres		2-YR OUTFLOW cfs	0.00
CURRENT OWNER				10-YR OUTFLOW cfs	0.00
OWNER ADDRESS			能感情	REC DRAWING	No
OWNER ADDRESS 2		SERVICE AREA DESCRI	SF Residential Lots	, Roads & Woods	2
CITY-STATE-ZIP CODE	and a second	IMPERV AREA acres	0	CONSTR CERTI	No
OWNER PHONE		RECV STREAM	UT of Halfway Cree	ik 🦾	
MAINT AGREEMENT	No	EXT DET-WQ-CTRL	No	LAST INSP DATE	2/20/2001
EMERG ACTION PLAN	No	WTR QUAL VOL acre-ft		INTERNAL RATING	1
		CHAN PROT CIRL CHAN PROT VOL acre-ft	- <u>NO</u>	MISC/COMMENTS	
Get Last BMP No		SW/FLOOD CONTROL	Yes	Partial fail d/s embank & ba spill still funct. Letter sent 0	rrel. Princ 2/23/01
	Return to Menu	GEOTECH REPORT	No		

4/23 Meeting · College Creek Wotevshed

Kingspoint Dam at Overlook Drive

General Information & Facts

A/23 Public A/23 Public Merting

- One of two larger dam structures in the Kingspoint subdivision
- East Dam near Colonial Parkway
- FEMA Special Flood Hazard Area Zone AE directly downstream of dam.
- Drainage from dam to Halfway Creek then to College Creek.
- Considered a private dam by the County. Not a BMP or stormwater management facility.
- Inventoried as a private dam by the County under the County BMP Inventory/Inspection program. .
- Assigned County BMP ID identification number CC 014.
- Research in plans/plat (S-19-73) at County records office.
- Probably constructed as an amenity to the community.
- Dam constructed before current water quality and quantity control regulations, pre-1975 and pre-1990 respectively.
- Repair ideos Repair ideos Documented failure mode following during Hurricane Floyd (County letter February 23, 2001)
- Normal pool of lake is about 5.5 acres (5.426 acres per County GIS)
- Drainage Area to lake is about 55 acres (based on County GIS)
- Increased runoff from improved lots and roadways drains to lake.
- 28 lots in Kingspoint drain to lake
- 17 land parcels directly border the lake perimeter ۰
- 16 Kingspoint lots and one property to east of lake (Sections 1, 2 and 5 of Kingspoint)
- One additional downstream parcel may be affected by repair/improvement construction activities
- Actual dam ownership uncertain

Misevesed taxing district - service district MCR permitermit Betore LOP Betore Ponds Worhill Ponds CC014 KINGEPOINT SUBDIVISION - 010

PLAT 1 1973 Ford 1973

Recent changes in laws may affect work plan

July 1, 2002 Commonwealth Dam Safety Regulations

- Any dam over 6 feet in height with over 50 acre-feet of storage
- Any dam over 25 feet in height with over 15 acre-feet of storage
- It is presumed that dam is over 25 feet high and has over 15 acre-feet of storage, thus falling under Dam Safety regulations
- Storage volume is measured to lowest point in top of dam.
- As dam is about 5 acres in size, would only need to be an average of 3 ft. deep to top of dam to qualify.
- Must be inventoried by owner. Alterations permit required for repairs/improvements.

2004 County Chesapeake Bay ordinance changes

- Below existing dam was historical Resource Protection Area (RPA) and RPA Buffer, back to 1990
- Changes effective January 1, 2004 resulted in the lake becoming an RPA feature and a RPA buffer around the lake
- Lake is perennial stream fed
- Routine maintenance of an existing dam in an RPA/RPA buffer, by itself may not require a Ches Bay exception.
- Dam repair/improvements would require a Ches Bay exception (administrative) as part of the plan review process.

Land-Disturbing Permit

- No longer under auspices of Hurricane Floyd damage related project (only lasted about 1 year after Hurr Floyd)
- Any repair/improvement plan in excess of 2,500 square feet of Land-Disturbing would require a LD permit.
- Due to RPA/RPA buffer, repair/improvement plan would require County review due to Section 23-10 of the CBPO
- Will require an erosion and sediment control plan for dam repair/improvement activities.
- Environmental Division review mainly for proper E&S control during work activities.
- Environmental Division will review work plan for consistency with standard accepted dam design & construction practices.
- Will offer comments about standard practice but not required.
- Environmental Division will not review plan to conform with County BMP manual requirements (not a BMP).
- Will not issue Land-Disturbing permit until evidence of permission from property owner(s) is provided.
- Will not issue Land-Disturbing permit until evidence of dam safety permit from DCR Dam Safety.
- Inspector will check compliance during land-disturbing operation.

Plan Expectations

Property Lines/Owners Topography Erosion & Sediment control Access Dam Repair/Improvement Plan Must show proper erosion and sediment control measures. Sequence of construction Standard checklist requirements for E&S plan Important to follow standard accepted practices for dam design & construction Proper geotechnical investigation will be important to success of the repair/improvement plan

Parcel No.	Address	Name	Section			
Kingspoint Lots Adjacent to Lake						
4910210021	102 Ivy Ct.	Buttice, Steven	Lot 21, Sec 1			
4910220023	6 Firethorn Pl.	Dexter, Howard & Cornelia	Lot 23, Sec 2			
4910220020	205 Woodbine Dr.	Dom, Bill M. & Charlotte	Lot 20, Sec 2			
4910220019	204 Woodbine Dr.	Miller, Thomas J. & Maria	Lot 19, Sec 2			
4910220017	104 Crownpoint Rd.	Warner, Marshall N. & Linda	Lot 17, Sec 2			
4910250037	102 Aspen Ct.	Bill, James A. & Ann Marie	Lot 37, Sec 5			
4910250036	105 Aspen Ct.	Wooten, Vernon E. & B. Elaine	Lot 36, Sec 5			
4910250035	103 Aspen Ct.	Hill, Fred R. & Janet	Lot 35, Sec 5			
4910250034	108 Crownpoint Rd.	Schiavone, Anthony & Margaret	Lot 34, Sec 5			
4910250033	110 Crownpoint Rd.	Konefal, Stephan & Ogburn, Betsy	Lot 33, Sec 5			
4910250032	112 Crownpoint Rd.	Henry, Lawrence & Margaret	Lot 32, Sec 5			
4910250031	114 Crownpoint Rd.	Randolph, John H. & Maynard	Lot 31, Sec 5			
4910250030	102 Overlook Dr.	O'Connell, William E. & Janet	Lot 30, Sec 5			
4910250029	104 Overlook Dr.	Strom, Thomas L. & Curtis, Barbara	Lot 29, Sec 5			
4910250028	106 Overlook Dr.	Biedenhorn, Cyril J. & Carla	Lot 28, Sec 5			
49102500270	108 Overlook Dr.	Kellogg, Kirsten M.	Lot 27, Sec 5			
Kingspoint Lots Downstream of Dam (Construction Impact)						
4910250026	110 Overlook Dr.	Roberts, James M. & Terri	Lot 26, Sec 5			
Other Land Parcels Adjacent to Lake						
4910100006	110-A Overlook Dr.	Tan, Dr. Hoay T.	n/a			

PO# 270637

TIMMONS GROUP

YOUR VISION ACHIEVED THROUGH OURS.

INVOICE cc 014

September 25, 2007 Project No: 24300 Invoice No: 107649

Wayland Bass James City County Dept of Development Management 101-A Mounts Bay Road Williamsburg, VA 23187

Project 24300 **Kingspoint Dam**

Professional Services through August 31, 2007

		Percent		Previous	Current
Billing Phase	Fee	Complete	Earned	Billing	Billing
Site Inspection	1,000.00	100.00	1,000.00	1,000.00	0.00
Hydrologic & Hydraulic Calcs	4,500.00	100.00	4,500.00	4,500.00	0.00
Dam Failure Analysis & Classification	3,500.00	100.00	3,500.00	3,500.00	0.00
Hazard Area Mapping	1,000.00	100.00	1,000.00	1,000.00	0.00
Dam Safety Reports	2,000.00	100.00	2,000.00	800.00	1,200.00
Current Fee Billing	12,000.00		12,000.00	10,800.00	1,200.00
	Currer	nt Fee Billing		1,200.00	

Total this Invoice

\$1,200.00

oclume

\$60.00 LEFT IN PO#

Please Remit to: 1001 Boulders Parkway, Suite 300 Richmond, VA 23225 804.200.6500 - 023

We thank you for your business! Due and payable upon receipt Any balances over 30 days will accrue interest Federal Tax ID: 54-1301413

CC014 KINGSPOINT SUBDIVISION - 028

Scott Thomas

From:Scott ThomasSent:Tuesday, November 09, 2004 11:21 AMTo:Leo Rogers

Subject: W&M Game/Tan Lot

Leo,

Thanks for going to the game with us this past Saturday. It was a good time.

On the Tan Lot issue, I called Mike Lyttle (Prudential-McCardle) back and told him that I spoke with you and gave him NO answers to the two questions he asked me (via fax).

- 1. Is the County responsible for maintaining a passable entrance into the Tan 10 acre lot? (NO)
- 2. If so, is the County responsible to repair the dam which a portion of the road entrance is situated? NO

I told him that these were legal issues and that I had no authority to make determination and if he needed to speak with you further he should call you himself.

Attached is the letter I sent back in February of 2001 about what was necessary to repair the dam, regardless of who was responsible. My letter was addressed to the HOA.

Scott J. Thomas, P.E. James City County

Environmental Division

Visit:

http://www.james-city.va.us/resources/devmgmt/div_devmgmt_environ.html and www.protectedwithpride.org

MINE W1005 LANOMARK 157-463-3563

Nov 04 04 04:20p

To: Scott Thomas From: MikeLyTTle (257) 564-0767

1040705

VIRGINIA: IN THE CIRCUIT COURT FOR THE CITY OF WILLIAMSBURG AND COUNTY OF JAMES CITY

DR. HOAY T. TAN,

Plaintiffs.

v.

Chancery No. CH14702

JAMES M. ROBERTS

and

TERRI T. ROBERTS,

Defendants.

FINAL DECREE

Plaintiff, Dr. Hoay T. Tan ("Tan") and Defendants, James M. Roberts and Terri T. Roberts ("Robertses"), have come before the Circuit Court for the City of Williamsburg and the County of James City ("Circuit Court") representing that all matters between them have been settled and resolved.

UPON CONSIDERATION OF the pleadings, the statements of the parties and for other good cause shown, the Circuit Court does hereby find as follows:

1. Tan is the owner of that certain parcel of property known as 110-A Overlook Drive,

Williamsburg, Virginia ("Tan Property") and more fully described as follows:

All that certain piece or parcel of land situate, lying and being in James City County, Virginia, (formerly located in Jamestown District), known and designated as 10.0308 acres as shown on a plat entitled "Plat of Kingspoint Corporation, Parcel 'B', Section 5", made by E. E. Paine, Consulting Engineer, dated February 9, 1968, recorded in Plat Book 33, at Page 59, and to which said plat reference is here made for a more complete description of the property.

Subject to rights of Kingspoint Corporation, its successors and assigns, ito construct a lake and to flood a portion of said land not to exceed that line shown on the Plat of Section 5, Kingspoint Subdivision, and labeled "Maximum High. Water Flood Level", and subject to the nonexclusive right of other owners of lots adjoining said lake to the use of the surface of the lake, in common with the Grantee herein, provided the waters of such lake, when built, actually flood a portion of any of such lots adjoining.

Together with all right, title and interest of the Grantor herein in and to the dam and the Fifty foot right-of-way leading from the property herein conveyed to Overlook Drive.

2. The Robertses are the owners of that certain parcel of property known as 110 Overlook

Drive, Williamsburg, Virginia ("Robertses Property") and more fully described as follows:

All that certain lot, piece or parcel of land situate, lying and being in James City County (formerly situate in Jamestown District), Virginia, known and designated as Lot Twenty-Six (26) as shown on that certain plat entitled "KINGSPOINT SECTION 5, KINGSPOINT CORPORATION, OWNER AND SUBDIVIDER, LOCATED IN JAMESTOWN MAGISTERIAL DISTRICT, JAMES CITY COUNTY, VIRGINIA" dated February 9, 1968, and made by R. M. Mackintosh, Certified Land Surveyor, recorded in the Clerk's Office of the Circuit Court of the City of Williamsburg and County of James City in Plat Book 26, at Page 27, to which said plat reference is here made for a more complete description of the property.

3. There exists a fifty-foot wide right of way extending from Overlook Drive to the Tan Property and adjacent to the Robertses Property ("50" Right of Way"), all as more fully shown on the plat of subdivision dated February 7, 1969, and recorded at Plat Book 26, page 27, in the clerk's office of the Circuit Court ("Subdivision Plat"). **The 50" Right of Way terminates** / **midway across the dam at the boundary of the Tan Property** as shown on the plat dated February 9, 1968, and recorded in Plat Book 33, at Page 59.

4. The 50" Right of Way was dedicated to the County of James City for use as a public road as shown on the Subdivision Plat although it has not been accepted into the secondary system of highways by the Virginia Department of Transportation. James City County is the current fees simple owner of the 50" Right of Way subject to the public's right to use it as a public road.

2

CC014 KINGSPOINT SUBDIVISION - 033

5. The public in general, including Tan and the Robertses, have the right to use the 50" Right of Way as they would any other public road, including using it to access the Tan Property and the Robertses Property.

6. Neither party has acquired exclusive rights in and to the 50" Right of Way by adverse possession or other prescriptive use because such rights cannot, as a matter of law, arise upon property owned by any governmental entity.

WHEREFORE, based upon these finding of facts, the Circuit Court does ORDER, ADJUDGE and DECREE as follows:

a. Neither Tan nor the Robertses shall block, impede or otherwise interfere with the use of the 50" Right of Way by any person so long as that use is lawful and consistent with the use of a public road. Either party may take such lawful action is necessary should the 50" Right of Way become blocked or if use of the 50" Right of Way is not consistent with the use of a public road.

b. So long as any person is lawfully within the 50" Right of Way and using it in compliance with this Order, the Robertses are enjoined from directing any comments or taking any action toward Tan, his agents, assigns, employees, successors or invitees, including real estate agents and prospective purchasers, on the 50" Right of Way and Tan is enjoined from directing any comments or taking any action toward the Robertses, their agents, assigns, employees, successors or invitees, within the 50" Right of Way.

c. Both parties are enjoined from claiming that either party has the exclusive right to use the 50" Right of Way.

d. After entry, this decree shall be recorded in the land records of the Circuit Court by counsel for Tan so as to provide notice to future owners of the Tan and Robertses Properties. <u>Hoav T. Tan</u> shall be indexed as both grantor and grantee. <u>James M. Roberts and Terri T.</u>

3

Roberts shall be indexed as both grantors and grantees. James City County shall be indexed as both grantor and grantee.

e. After entry of this decree the clerk of the Circuit Court shall place certified copies in the courthouse boxes of undersigned counsel.

f. This action is DISMISSED and the clerk of the Circuit Court shall place it among the ended causes,

Entered this 12th day of Octow, 2004.

Judge of the Circufit Court for the City of

Williamsburg and the County of James City

We ask for this:

Sheldon M. Franck, Esq. Geddy, Harris, Franck & Hickman P.C. 1177 Jamestown Road Williamsburg, Virginia 23185 Counsel for James M. Roberts and Terri T. Roberts

James M. Roberts

Roberts

ohn Valdivielso, Esq. Kaufman & Canoles, P.C. P.O. Box 6000

Williamsburg, Virginia 23188 Counsel to Dr. Hoay T. Tan

an

Dr. Hoay Tan

Seen and agreed:

Leo P. Rogers, Beq. Deputy County Attorney James City County 101-C Mounts Bay Road P.O. Box 8784 Williamsburg, Virginia 23187

#6054452 v1

A COPY TESTE: BETSY B. WOOLRIDGE, CLERK City of Williamsburg and County of James City, VA im BY **Deputy Clerk**

5

N Ŵ

ninitari Set	c y uluuhi	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	n an	r Sector	0						12		
	s S S		9	9.1									
			8	8		2		81		•		A CONTRACTOR	
: i			120 130 140		الطيطيل	200 220	أىلىلىلىل	240 260 260	- 005				
•.			011 001 06		لملململي	40 160 100	ململدلدلدل		- 2				
		50 60 7	60 70 80		ليليليلي	100 120 1	بالبليليلية	120 140 160	- 06 -				
		00 40 01 1 1 1	30 40 50	و يو وي	بابابابا	60 80	ا ا ا ا ا ا		- 500				
		0 10 20 1 1 1 1	- & - 0 - 0			0 20 40		ن 20 40 إنتار الترا	- ອັ , - ວ				
	20	SCALE:	25. SCALE	30	40 F	310.33	50	SCALE	SCALE				

5-19-73

COPY

Kingspoint Lots Adjacent to Lake
 Other Land Parcels adjacent to Lake
 Other Kingspoint parcels in Lake watershed

ilie ain An ann	indalata Indalata	e Internetion	վարերեր							
dadada.	ç Ç	z Jalalas	L L	0					C. A	
					Ċ					
يىرى بورۇمۇر يې 1 1	9 7	9	Al-hu			Alexan		·		
		·• .	.			• •	4, / - 244			
	0 10 20 30 40 50 60 70 80 90 100 10 120	0 10 20 30 40 50 60 70 60 90 100 120 130 H0 120		0 20 40 60 80 100 120 140 100 120 200 200 200	0 20 40 80 80 80 100 120 140 141 141 141 141 141 141 141 141 14	o 100 200 ave des sos ese				
	20- SCALE	E3. SCALL	30 SCALE	40 SCALE	50 SCALE	100 SCALE				

-

5-19-73

COPY

• ·

Scott Thomas

From:	Scott Thomas
Sent:	Wednesday, April 25, 2007 2:26 PM
То:	Leo Rogers
Cc:	Wayland Bass
Subject:	RE: Please review and comment
Attachments:	KingspointDam.cc014.doc

1. Per Sandy's request to Wayland today, me and Wayland talked late this morning. Me and Wayland both have knowledge about this dam over the last 8 years. I gave Wayland an update of what was discussed at Monday's meeting and discussions I had with the citizen group from the technical end and possible dam safety permit issues. Wayland is normally the one to organize the procurement of an engineer through our annual service contract (like Lake Powell, Jolly Pond, etc.)

- 2. I have read and have no issues with the access agreement as long as the study & evaluation by the County's agent can confirm that the dam does indeed fall under the Commonwealth's dam safety requirements. I believe that is indeed the case, but that needs to be confirmed right away by the study. If it can be done within the framework of that language (which it appear to) then I have no comments.
- 3. I've attached the notes I prepared for myself for this past Monday's meeting with you, Bruce and the citizen group. I provide it for information purposes only for your file. It gives some general facts and information on the dam and anticipated land-disturbing permit requirements.

As I talked to Wayland today, I copied this email to him also as a courtesy. If you need him to review and comment on the agreement, you can call him or email him.

Scott J. Thomas, P.E. Chief Engineer - Stormwater James City County Environmental Division

From: Leo Rogers Sent: Wednesday, April 25, 2007 1:41 PM To: Scott Thomas Subject: Please review and comment

ACCESS AGREEMENT

THIS ACCESS AGREEMENT ("Agreement"), dated this _____ day of April, 2007, by and between the County of James City, Virginia and the James City Service Authority (collectively the "County"), and Kirsten M. Kellogg ("Ms. Kellogg"), Hoay T. Tan ("Mr. Tan"), and James M. and Terri T. Roberts ("Mr. and Mrs. Roberts"), (Ms. Kellogg, Mr. Tan and Mr. and Mrs. Roberts are collectively referred to as "Owners").

- WHEREAS, the County is the owner of certain dedicated unimproved right-of-way off Overlook Drive in the Kingspoint subdivision of James City County; and
- WHEREAS, Ms. Kellogg is the owner of certain real property commonly known as 108 Overlook Drive in James City County, Virginia 23185; and
- WHEREAS, Mr. Tan is the owner of certain real property commonly known as 110A Overlook Drive in James City County, Virginia 23185; and
- WHEREAS, Mr. and Mrs. Roberts are the owners of certain real property commonly known as 110 Overlook Drive in James City County, Virginia 23185; and
- WHEREAS, the County is willing to perform or have performed by its agents certain tests, studies, evaluations and assessments to determine the integrity of the dam, intake facilities, piping and out flow area to determine its condition and assess the nature and extent of repairs which may be necessary; and
- WHEREAS, the Owners desire to have the County perform such tests, studies, evaluations and assessments and agree to allow the County and its agents to access and use his/her/their property for such purposes.

1

THEREFORE, for and in consideration of the mutual covenants herein set forth, it is agreed as follows:

- I. The Owners authorizes and permits the County, designated agents and representatives a right of ingress and egress across his/her/their property for the purpose of testing, studying, evaluating and assessing the dam and any inflow or outflow structures, pipes and discharge areas to determine their condition and assess the nature and extent of repairs which may be necessary. This right of use and ingress and egress shall be effective for twelve months (12) months from the execution of this Agreement provided, however, that this Agreement may be terminated at any time by Owners upon 60 days prior written notice to the County. Any tests, studies, evaluations and assessments conducted by the County, its representatives or agents shall be at the County's own risk, cost and expense. The County shall, at its expense, restore the properties to their prior condition to the extent of any changes made by its agents or representatives. The County agrees to share the information it receives with the Owners.
- II. The County hereby agrees to be responsible for any and all claims, judgments, damages, fines, penalties, liability, costs and expenses arising from acts or omissions by its agents or representatives exercising the above rights on the properties. The County agrees to name maintain insurance for itself and require insurance coverage from its agents. Such insurance shall provide at least One Million Dollars (\$1,000,000.00) worth of liability insurance coverage for any claims arising from the County use of the properties.
- III. Notwithstanding the place where this Agreement may be executed by any of the parties hereto, the parties expressly agree that all terms and provisions hereof shall be construed and enforced in accordance with the laws of the Commonwealth of Virginia.

2

IN WITNESS WHEREOF, the parties have hereunto set their hands and seals:

Kirsten M. Kellogg

James M. Roberts

Hoay T. Tan

Terri T. Roberts

James City County, Virginia

James City Service Authority

By:__

Sanford B. Wanner County Administrator By:__

Larry M. Foster General Manager

Approved as to form:

County Attorney

CC014 KINGSPOINT SUBDIVISION - 043

à.

Notes cause negressive enosition Failure at desemb borset outlet harrel. Ad, the rundt 110 Overlook Prive 6PIN 4910250026 RAM EMB GPIN 4910200006 110 Overlood Drive UN 23185. Eloise A. JACOBS (Trustee) TAN, DR. HOATT. from 204 Jones MILL CANC WMBG VA 23185 1.728AC TONCA! LOT ZO SELS KP 6PIN 0VEV 101 23105 A 109 DVEV 101 23105 A 109 DMBY + KITSTEN MA 100 DMBY + KITSTEN MA And North Lot 10, 3. AC. APJ COLPKNY PB 55 Trees! ~1 10727, 525th BANK SUDE FAIL 110 erlock Drive CC014 KINGSPOINT SUBDIVISION

CC014 KINGSPOINT SUBDIVISION - 049

March 12, 2014

Ms. Mary Ann Freeman 1490 Quarterpath Road, Ste 5-196 Williamsburg, VA 23185

RE: Kingspoint Pond Dam – Letter Report

Williamsburg Environmental Group, Inc. (WEG), now Stantec, was retained by you to evaluate the condition of Kingspoint Dam, located in James City County, Virginia. Kingspoint Pond Dam is located in part on 110A Overlook Drive, a property that you consider to purchase. The other part of the dam embankment is located on a James City County undeveloped right-of-way. Your primary interests concern the estimated costs for the rehabilitation of the dam, the suitability of the dam to support a driveway or access road to the property, and the potential impact of a mandate by James City County that water and sewer will be provided from Overlook Drive, potentially by way of the dam embankment.

The author met with you for an initial site visit on December 19, 2013. At this occasion a first impression was shared with you, including needed repairs and maintenance, and the steps needed to bring the subject dam in compliance with the *Virginia Impounding Structure Regulations* (Regulations). It was further discussed that the dam embankment should be investigated by a geotechnical engineer to determine whether there are additional issues with the dam, and that a cost estimate should be obtained from a contractor experienced with dam repairs. Based on this discussion and initial site visit, you contacted with us to provide and coordinate such services.

Based on an appraisal for the property prepared in 2012, the pond was built in the early 1970s as a subdivision amenity and stormwater retention pond. Maintenance apparently was sporadic and the embankment became overgrown with vegetation. The impoundment suffered partial failure during Hurricane Floyd in 1999. It appears that pipe separation in the downstream portion of the outfall barrel led to partial slope failure. In addition, storm events toppled some of the trees that have grown on the dam embankment, leading to some erosion. It appears that the trees have been removed in recent years, however, large stumps remain, and the downstream face of the embankment is covered with wood chips.

Geotechnical Evaluation

Stantec contracted with Blue Ridge Geotechnical, LLC (BRG) for the geotechnical evaluation of the dam embankment. Under BRGs direction, a driller performed two (2) standard penetration test borings on February 4, 2014. Soil samples taken from these were submitted for laboratory testing. On February 14, 2014, BRG provided a draft *Report of Geotechnical Exploration – Kingspoint Dam*, summarizing the results of their investigation (a copy of the report is enclosed). The section dealing with the cause of failure states the following:

It is difficult to determine whether the leak in the CMP caused the failure of the downstream slope of the dam, or whether the failure resulted in the pipe becoming severed. Additionally, it is not known what impact, if any, that overtopping may have played in the failure. It seems likely that the pipe began to leak at some point, which ultimately resulted in the failure of the dam. When a buried pipe leaks, it will saturate the soil, which can significantly reduce the shear strength of the soil. Additionally, the soil that surrounds the pipe can progressively enter the pipe, which can create loss of ground, eventually resulting in a large-scale failure.

Based on the overall observations made at the dam embankment, including the fact that no piping is evidenced in the failure zone, it appears likely that piping from the barrel is the primary cause for the failure. However, as the dam embankment is not equipped with an auxiliary/emergency spillway, it cannot be excluded that overtopping occurred and contributed to the failure. A number of significant storm events have occurred since Hurricane Floyd that could have resulted in overtopping of the dam, including Gaston in 2003 and Isabel in 2011. A hydrologic and hydraulic analysis of the watershed, pond, and outlet structure would be needed to evaluate the potential contribution of overtopping to the failure.

The geotechnical engineer provides the following recommendations:

Although the failed zone of the dam is large and a significant portion of the dam has been removed, no apparent seepage was noted in the shear face of the scarp. This seems to indicate that the dam is still able to function in spite of the failure. Based on our borings, the material with which the dam was constructed (at least in the center of the dam) appears to be predominantly clay. Clay has a low permeability, which is good for controlling seepage. The following corrective measures are recommended:

- 1. Evaluate the condition of the primary spillway, the riser pipe and the CMP barrel. This can be accomplished with video camera that can be fed both from the top, extending down the riser pipe, and up the CMP barrel from the severed portion. For best results, this work will likely have to be performed when the pond level is low, so that water is not flowing within the pipe. The camera can be used to determine if the pipe is corroded, severed at any joints, or otherwise compromised. One sign of a potential future problem might be if there is an area where soil appears to be entering the pipe.
- 2. Once it is confirmed that the portions of the riser and barrel that remain in the dam are sound, the failed material at the toe of the dam can be removed. As this area is currently being inundated with water exiting the barrel, this work should be performed when the pond level is below the primary spillway. Alternatively, the water should be collected at the current discharge point and piped downstream, until the water can be conveyed within a new extended barrel.
- 3. Soft, weak soil that is currently present at the base of the failed area should be carefully removed, and the subgrade evaluated. A limited portion of the soft material can probably remain; however, this must be determined in the field. If some soft soils must remain, it may be necessary to utilize a bridge lift of large stone (e.g., VDOT No. 2 stone). It is imperative that this material be completely wrapped in geosynthetic fabric for separation. It will also be important that this excavation not undermine the existing dam in any way.
- 4. Extend the barrel and construct a proper outfall. The lower half of the barrel should be supported on a cradle of concrete or flowable fill, as it is not possible to compact around the lower portion of the pipe.
- 5. Replace the failed portion of the dam using compacted soil fill.

The geotechnical engineer indicates that the dam appears capable of supporting a proposed driveway. Recommendations are given in the report that prior to construction of the driveway the wood chips should be removed and the subgrade thoroughly proof-rolled with a fully loaded tandem-axel dump truck to identify any soft or weak areas. Such areas should be improved based on field conditions, under consultation of a geotechnical engineer.

It is understood that the placement of water and sewer lines is considered across the dam. In order to redcued the risk that the dam will be harmed by localized inundation, it is imperative that measures be taken to keep these lines from leaking or rupturing during their service life, especially at the joints. Alternative routes for these utility connections should be explored.

Dam Safety Technical Inspection

Regardless of whether an impounding structure is subject to the Regulations or not, completing a *Dam Safety Technical Inspection* will yield significant information about the status of an impounding structure, and provide guidelines for the repair and/or maintenance recommended. While to our knowledge Kingspoint Pond Dam has not been certified in the past, preliminary calculations indicate that the impoundment is subject to the Regulations.

Stantec conducted a *Dam Safety Technical Inspection* on February 25, 2014. During the inspection the Department of Conservation and Recreation (DCR) *Annual Inspection Report for Virginia Regulated Impounding Structures* as well as our own inspection form was completed, and pictures taken for documentation. Copies of the forms and the photo documentation are enclosed.

The most significant issue for this impounding structure is the pipe separation of the outfall barrel, which apparently led to slope failure on the downstream face. While there is no indication that seepage through the dam embankment occurs, the flows from the dislodged pipe can cause further erosion at the bottom of the slope failure, which in turn can further the slope failure. In the extreme, embankment failure should be expected in the future if the dam is not repaired.

While large trees have been removed from the dam embankment in recent years, some of the large stumps remain. These stumps and roots with a diameter exceeding one (1) inch should be removed, and the face of the dam re-graded and seeded. Further, the trees apparently have been chipped in place and the wood chips applied on the downstream face of the dam. While these wood chips act as mulch and suppress most of the herbaceous growth, they make it impossible to inspect the downstream face of the dam for rutting, animal burrow, etc. The layer of wood chips also masks the face of the dam to an extent that makes it impossible to observe deformations or slumping. It is recommended that the wood chips be removed and a healthy stand of grass established.

The upstream face of the dam embankment is covered with remnants of herbaceous vegetation to a degree that makes it impossible to inspect the dam properly. This vegetation should be removed and the embankment re-seeded, with soil amendments determined by soils tests, so that a healthy stand of grass can be established. The grass should be mowed at least twice per growing season to prevent the re-establishment of woody vegetation.

In keeping with the general lack of maintenance of this impoundment, debris, including tree trunks and branches, has accumulated along the shoreline and to a smaller degree at the inlet to the principal spillway.

Such debris accumulation will reduce the capacity and reliability of the spillway. In the extreme the debris can clog the spillway to a degree that will block the spillway and raise the water level in the reservoir. Such debris should be removed on a regular basis.

Based on our preliminary assessment, this impounding structure is subject to the Regulations, and either an Operation & Maintenance (O&M) Certificate or a General Permit needs to be obtained to operate the impounding structure. Aside from the recommended repair and maintenance, a dam break inundation zone study will need to be prepared for this dam. As it appears that this dam likely is a low hazard dam, a simplified dam break inundation study can be commissioned through the DCR at a cost of \$2,000. The results of this simplified study can then be used to prepare an *Emergency Preparedness Plan*, provided the low hazard classification can be confirmed. With the repairs and maintenance completed, and the referenced materials developed, the prerequisites are met to obtain an O&M Certificate or a General Permit.

Contractor Estimate

Once the draft geotechnical report was available we contacted Bander Smith, LLC, a Richmond based contractor that is specialized in dam and spillway rehabilitation work, for a budget level cost estimate for the needed repair work on the spillway and dam embankment. We provided the geotechnical report and photo documentation for an off-site budget estimate.

The contractor proposes, similarly to the recommendations made by the geotechnical engineer, that an inspection of the outfall barrel and the riser structure be conducted to review the condition of the spillway and it's suitability for the proposed repair method. Bander Smith, LLC, proposes to conduct such an inspection for a fixed fee of \$2,200.

Bander Smith provides a budget level cost estimate for the repair of the spillway and the dam embankment with a cost range of \$85,000 - \$100,000, excluding permitting as needed. The repair will result in a fully functioning primary spillway system, and consists of the following steps:

- Mobilization, Erosion and Sediment Control Measures, Water Control/Diversion
- Existing Structure Removal (separated barrel only) and Embankment Preparation
- Slip line of the remaining corrugated metal pipe
- Re-construction of the Embankment, including removal of tree stumps
- Demobilization, Clean-up

The contractor has indicated that the cost range provided contains some contingency adjustments, and that once site access and conditions of the pipe are assessed, a firm proposal can be provided that likely will tend towards the lower end of the cost range shown. A copy of the contractor estimate is enclosed.

Additional Considerations

The appraisal indicates that "15 other lots abut the pond, and at least 11 lots appear to have some Fee ownership of a portion of the pond." The pond obviously serves as an amenity for the adjacent properties, but it also serves as a stormwater management facility for the sub-division.

According to the appraisal, it appears that there have been efforts to repair the dam, whereas "a special taxing district was contemplated for the pond owners, which would result in shared cost and spreading

those costs over a defined period of years." Based on the appraisal, "unilateral repair of the dam, given pond and dam ownership issues as well as the pond's value as a storm water retention basin, is not considered reasonable and fair."

The overall situation appears to be somewhat complex, with no clear path how cost sharing can be achieved among interested parties. We suggest that an in-depth discussion with County representatives would be valuable, with the goal to:

- 1. Gain an understanding of what considerations have been made regarding repair and cost sharing, and
- 2. To explore alternative approaches in light of recent regulatory developments.

Of specific interest is, whether the County may be willing to support the repair of the impoundment in combination with a retrofit of the spillway that would allow for water quality credits towards the County's pollution reduction requirements for the Chesapeake Bay TMDL or for the County's Municipal Separate Storm Sewer System (MS4) permit. Stantec will gladly assist you with such discussions with the County.

It also should be noted that a singular access to a property, especially across a dam embankment or a bridge, always entails a certain risk of failure, thus making the property at least temporarily inaccessible. We believe it would be prudent to incorporate a secondary ingress/egress route, maybe from the north, that can be used in case of an emergency.

Stantec appreciates the opportunity to working with you on this project. In case of questions or for discussion, please contact us at 757-220-6869, or via email at <u>chris.kuhn@stantec.com</u>.

Best regards,

Stantec Consulting Services Inc.

the file

Chris Kuhn

Enclosure

Cc: Jeffrey T. Hancock, P.E., Stantec

Kingspoint Pond Dam – Photo Documentation

View along top of dam, from right abutment.

View along upstream face of dam, from right abutment.

Brick principal spillway with four (4) control orifices.

Moss and bare spots on embankment.

Tree stump that should be removed.

Downstream part of separated outfall barrel, corrugated metal pipe (CMP).

Displaced junction box within outfall barrel.

View of downstream face of embankment, covered with wood chips from tree removal.

View of downstream portion of displaced outfall barrel, from downstream end towards slope failure area.

Overview of displaced outfall barrel and slope failure area.

Slope failure area.

Displaced junction box.

Downstream penetration of remaining outfall barrel, with displaced portion of barrel and junction box.

Outfall barrel, pipe separation area.

View of failure area.

Overview of failure area.

Downstream face of embankment.

Wood chip cover and remaining tree stump.

Groin swale on left abutment, downstream face.

View along top of embankment, from left abutment.

View along upstream face of embankment, from left abutment.

Herbaceous vegetation on upstream face of abutment.

Pipe separation area.

Dam Inspection and Maintenance Inspection Checklist

Name of Facility:Kingspoint Pond DamProject #:203451640Date of Inspection:February 25, 2014Inspected by:Chris KuhnEmbankment

Yes	No	
	\boxtimes	Are there any surface cracks?
\boxtimes		Is there any unusual movement or cracking at or beyond the toe? Slope failure
	\boxtimes	Is there erosion on upstream face from wave action or changes in pool level?
\boxtimes		Is there erosion from runoff, either gullies or bare areas? Downstream toe area?
\boxtimes		Is there erosion from traffic (people, animals, vehicles)?
N/A		Are there animal burrows? Not observable due to herbaceous vegetation on US face and wood chips on DS face.
	\bowtie	Are there depressed areas on the dam?
\square	$\overline{\boxtimes}$	Is there any evidence of piping? (Piping is evidenced by muddy flow through the
		dam and/or the formation of soil deposits beyond the dam and depressions on its slopes)
	\bowtie	Does the crest appear to have shifted or settled excessively? (Look for cracks in the
		embankment and associated structures. Compare alignment with plans if they are available).
N/A		If the upstream face is protected by riprap, is it in good condition? (Riprap is a
		layer, facing, or protective mound of stone in random size pieces, randomly placed
		to prevent erosion, scour, or sloughing of an embankment or structure).
N/A		If there is riprap in discharge channels or in the stilling basin downstream, is it in
		good condition?
N/A		If drainage channels at ends of embankments are protected by riprap, is it in good condition?
N/A		If there is riprap in miscellaneous areas (on downstream slope, on crest, etc.) is it
		in good repair?
N/A		If there are any drains to collect and remove seepage, are they operating properly?
N/A		If there are foundation drains outlets, are they clear and flowing?
\boxtimes		Are there wet spots or areas on the downstream face, at the toe, or beyond the
		dam? (Such spots are often indicated by a change in color or type of vegetation,
		such as from grass to cattails.) Some wet spots, likely due to runoff
	\boxtimes	Are there seeps or springs with flowing water? Attention should be paid to the
		transition areas from embankment to abutments, around any penetrations passing
		through the embankment, on downstream tact, at the toe of the dam and beyond,
		at the base of trees on/near/below the dam.
\boxtimes		Is there swamp or marsh type vegetation present on the downstream face or
		beyond the toe (cattails, tall grass, etc.)? Downstream area is floodplain of James
_		River
\Box	\bowtie	Is the dam overgrown with trees and/or underbrush? Stumps, herbaceous
		vegetation, wood chips on DS face.
clinic7	258	

Has the dam ever been overtopped? Unknown, but unlikely. No signs of overtopping observed in the field. Have there been any modifications to the embankment, such as raising the second se

Have there been any modifications to the embankment, such as raising the crest, changing the shape or size of the principal spillway, or changing the shape or size of the embankment?

Principal Spillway

Yes	No	
	\boxtimes	Can water flow into the principal spillway unobstructed, as designed? Some debris accumulation at principal inlet.
	\boxtimes	Is outlet pipe or discharge channel clear and open to allow for free passage of the principal spillway discharge? Pipe separation with associated slope failure. Dislodged pipe and soil divert flow
	\bowtie	Is the primary spillway structure in good condition (check concrete, wood, and metal portions for damage or deterioration)? Outfall pipe failure with slope failure
N/A		Does the lake have a low level drain to lower the water level in emergencies or for maintenance? None observed
N/A		If low level drain present, is it known to be in working condition? Note: Care should be taken when operating a low level drain that has not been operated for a long time. It may be impossible to close it once opened
N/A		If there are additional valves, operating equipment, or appurtenances, are they in working condition?

Auxiliary/Emergency Spillway No Auxiliary/Emergency Spillway

Yes No

- N/A Are the approach and the control section of the emergency spillway without obstruction, as designed and constructed?
 N/A Is the discharge channel clear and without obstruction, allowing free flow of emergency spillway discharge?
- N/A Is the emergency spillway constructed in a way that flow through it will not expose other portions of the dam to erosion?
- N/A Is the emergency spillway in good working condition overall? (Check for erosion within channel, adequacy of grass cover, integrity of concrete structures, etc.)

Reservoir Area

Yes	No	
	\bowtie	Does nature and land use of the surrounding area present any problems for the
		impoundment?
	\boxtimes	Is there evidence of landslides or instabilities along the shoreline?
	\boxtimes	Is serious wave erosion occurring along the shoreline?
	\boxtimes	Are significant amounts of sediment entering the impoundment, currently or in the
		past?

Watershed

No Yes

 \boxtimes Have there been any major modifications or significant changes in the watershed, such as urban development (commercial, residential), clear-cutting of woodlands, or other changes in landuse?

Downstream Channel

No Yes

 \square

Is the downstream channel free of obstructions? Past the toe of the embankment

Downstream Area

Yes	No	
	\boxtimes	In case of dam failure, is loss of life or significant economic loss likely?
	\boxtimes	Are current telephone numbers of persons living or working in the areas
		downstream of the dam, as well as telephone numbers of those responsible for
		facilities that would be affected (highways, public utilities) on file?
	\boxtimes	Are current telephone numbers of local authorities who will need to be informed if
		the dam is imperiled (sheriff, county administrator, emergency services
		coordinator) on file?
	\boxtimes	Is the Emergency Action Plan up-to-date and have drills been performed?

Notes:

To our knowledge this dam is not currently certified, and no Emergency Preparedness Plan has been prepared.

The most significant issue for this dam is the pipe separation of the outfall barrel, which apparently led to slope failure on the downstream face. While there is no indication that seepage through the dam embankment occurs, the flows from the dislodged pipe can cause further erosion at the bottom of the slope failure, which in turn can further the slope failure. In the extreme, embankment failure should be expected in the future if the dam is not repaired.

While large trees have been removed from the dam embankment in recent years, at least some of the large stumps remain. These stumps and roots with a diameter exceeding 1 inch should be removed, the face of the dam re-graded and seeded. Further, the trees apparently have been chipped in place and the wood chips applied on the downstream face of the dam. While these wood chips act as mulch and suppress most of the herbaceous growth, they make it impossible to inspect the downstream face of the dam for rutting, animal burrow, etc. The layer of wood chips also masks the face of the dam to an extent that makes it impossible to observe deformations or slumping. It is recommended that the wood chips be removed and a healthy stand of grass established.

The upstream face of the dam embankment is covered with remnants of herbaceous vegetation to a degree that makes it impossible to inspect the dam properly. This vegetation should be removed and the embankment re-seeded, with soil amendments determined by soils tests, so that a healthy stand of grass can be established. The grass should be mowed at least twice per growing season to prevent the re-establishment of woody vegetation.

In keeping with the general lack of maintenance of this impoundment, debris, including tree trunks and branches, has accumulated along the shoreline and to a smaller degree at the inlet to the principal spillway. Such debris accumulation will reduce the capacity and reliability of the spillway. In the extreme the debris can clog the spillway to a degree that will block the spillway and raise the water level in the reservoir. Such debris should be removed on a regular basis.

ANNUAL INSPECTION REPORT FOR VIRGINIA REGULATED IMPOUNDING STRUCTURES

Reference: Impounding Structures Regulations, 4VAC 50-20-10 et seq., including 4VAC 50-20-105, Virginia Soil and Water Conservation Board

Owner's Information					
Name of Dam:	Kingspoint Pond Dam	Inventory Number:	N/A		
Owner's Name:	Dr. Hoay T. Tan, Trustee	Location-County/City:	James City County		
Contact Person (if	Mr. A. John Tan				
different from above):	the second of th				
Owner's Address:	415N 2 nd Street, Unit 244, San Jose, CA 95112	Hazard Classification:			
Name of reservoir:	Kingspoint Pond				
Purpose of reservoir:	Amenity, Stormwater Management	(D)			
Telephone No.:	(Residential)	(Dusiliess)			
Other means of commu					
Owner's Engineer					
Name of Engineering Fi	irm and Engineer: Stantec, Jeffrey T. Hance	ock, P.E.			
Professional Engineer V	Virginia License Number: 37017	,			
Mailing Address:	5209 Center Street, Williamsburg, VA 23188				
Telephone No.: ((Business) 757-220-6869				
Directions: Make note	of all pertinent conditions and changes since the last	t inspection, or, if this is the	first inspection, since		
the filing of a design re	eport.	Data of This Inspection	Eab 25 2014		
		Date of Last Inspection	reb. 25, 2014		
		Date of Last Inspection	ulikilowii		
1 FMRANKMENT					
a Any alteration m	ade to the embankment? No				
u. Thiy utoration in					
b. Erosion on emba	ankment? Slope failure associated with pipe separa	tion of principal spillway, D	S face of dam		
c. Settlement, misa	lignment or cracks in embankment? No				
d. Seepage? If so,	seepage flow rate and location (describe any turbidity a	nd observed color within the	flow): No		
	_				
2. UPSTREAM SLOP					
a. woody vegetatio	Herbaceous vegetation, some large	stumps			
D. Rouelli burrows	Inot observable due to herbaceous v	regetation			
c. Remediai work p	I ree removal in recent years				
3 INTAKE STRUCT	URF				
a. Deterioration of	concrete? No				
b. Exposure of reba	ar reinforcement? No				
c. Is there a need to	prepair or replace the trash rack? No trash rack.				
d. Any problems w	vith debris? Some debris accumulation				
e. Was the drawdo	wn valve operated? No valve present				
	• •				

4. ABUTMENT CONTACTS

a. Any seepage? If so, estimate the flow rate and describe the location of the seep or damp areas (describe any turbidity and observed color within the flow):

No seepage observed. Right US groin has concrete ditch installed for some road drainage.

Evidence of runoff in left DS groin, with light erosion. Right DS groin is in failure area

5. EARTHEN EMERGENCY SPILLWAY Not present

a. Obstructions to flow? If so, describe plans to correct:

- b. Rodent burrows discovered?
- c. Any deterioration in the approach or discharge channel?

6. CONCRETE EMERGENCY SPILLWAY Not present

- a. Deterioration of concrete?
- b. Exposed steel reinforcement?
- c. Any leakage below concrete spillway?
- d. Obstructions to flow? If so, lists plans to correct:

7. DOWNSTREAM SLOPE Slope failure associated with failure of outfall barrel due to pipe separation

- Some large remaining stumps. Wood chips cover the whole face a. Woody vegetation discovered?
- b. Rodent burrows discovered?
 - Not observable due to layer of wood chips
- c. Are seepage drains flowing? No drains present
- d. Any seepage or wet areas? No seepage or wet areas on embankment. Failure area shows no sign of seepage

8. OUTLET PIPE Pipe Separation

a. Any water flowing outside of discharge pipe through the no Impounding Structure?

b. Describe any deflection or damage to the pipe: Pipe separation approx. half way through DS slope

9. STILLING BASIN Not present

- a. Deterioration of concrete structures?
- b. Exposure of rebar reinforcement?
- c. Deterioration of the basin slopes?
- d. Repairs made?
- e. Any obstruction to flow?

10. GATES Not present

- a. Gate malfunctions or repairs?
- b. Corrosion or damage?
- c. Were any gates operated? If so, how often and to what extreme?

11. RESERVOIR/WATERSHED

- a. New developments upstream of dam? No
- b. Slides or erosion of lake banks around the rim? No
- c. General comments to include silt, algae or other influence factors: Woody debris accumulation along shoreline and at the principal outlet structure. Algae
| 12. INSTRUMENTS Not present | |
|---|--|
| a. List all instruments | |
| b. Any readings of instruments? | |
| c. Any installation of new instruments? | |
| | |
| 13 DOWNSTRFAM/HAZARD ISSUES | |
| a. New development in downstream inundation zone? | No |
| | |
| b. Note the maximum storm water discharge or peak elevation during t | he previous year. Unknown |
| c. Was general maintenance performed on dam? If so, when? Tree | removal in recent years |
| d. List actions that need to be accomplished before the next inspection: | Repair of the pipe separation and slope failure |
| Removal of the stumps and roots with diameter larger than 1 | inch. Removal of herbaceous vegetation. Re-grading |
| of the dam faces, re-seeding and soil amendments based on te | sting. Debris removal along shoreline and at inlet |
| structure. | |
| 14. OVERALL EVAULATION OF IMPOUNDING STRUCTURE AN (Check one) EXCELLENT GOOD | ID APPURTENANCES |
| General Comments: <u>The impounding structure is not well maintained.</u>
and associated slope failure. Without repair the impounding structure is | Obviously the most significant issue is the pipe separation
at risk for breach in the future. |
| | |
| Recommendations: Tree stumps and roots as well as the layer of wood | chips need to be removed and a healthy stand of grass |
| established, which is mowed at least twice a growing season. | · · · · · · |
| Debris should be removed from the shoreline and around the outlet struc | ture. |
| Efforts should be undertaken to obtain an Operation & Maintenance Cert | tificate or a General Permit for the operation of this |
| Impoundment. Preliminary calculations demonstrate that the impoundm | ent is subject to the Dam Safety Regulations. |
| | |

CERTIFICATION BY OWNER'S ENGINEER (required only when an inspection by an engineer is required)

I hereby certify that the information provided in this report has been examined by me and found to be true and correct in my professional judgment.

Signed:		Virginia Number:
	Professional Engineer's Signature Print Name	2
This	day of , 20	
	Engineer's Virginia Seal:	

CERTIFICATION BY OWNER

I hereby certify that the information provided in this report has been examined by me.

Signed:					
	Owner's Signature			Print Name	
This	day of	, 20	 		

Mail the executed form to the appropriate Department of Conservation and Recreation Division of Dam Safety and Floodplain Management Regional Engineer

REPORT OF GEOTECHNICAL EXPLORATION

KINGSPOINT DAM

JAMES CITY COUNTY, VIRGINIA

Prepared for:

STANTEC/WILLIAMSBURG ENVIRONMENTAL GROUP

WILLIAMSBURG, VIRGINIA

Prepared by:

BLUE RIDGE GEOTECHNICAL, LLC

RICHMOND, VIRGINIA

BRG PROJECT NO. 150 REVISED MARCH 10, 2014

INTRODUCTION AND AUTHORIZATION

Blue Ridge Geotechnical, LLC (BRG) is pleased to submit this report of the geotechnical exploration program performed for the Kingspoint Dam in James City County, Virginia. This work was performed in general accordance with the proposal submitted to Stantec/Williamsburg Environmental Group (WEG) on January 21, 2014 and accepted on January 22, 2014.

PURPOSES AND SCOPE OF SERVICES

The purposes of our involvement on this project were to execute a subsurface exploration program, to evaluate the subsurface conditions at the site, and to prepare this report, which contains our geotechnical recommendations. The tasks that **BRG** performed are summarized below.

- A. Reviewed the available geologic literature and soils maps of the area.
- B. Performed two site visits (January 27, 2014 and February 4, 2014).
- C. Performed two (2) Standard Penetration Test (SPT) borings and two (2) shallow hand auger borings.
- D. Performed laboratory testing on selected soil samples.
- E. Estimated the engineering properties of the subsurface materials within the depths explored.
- F. Performed analyses in order to develop geotechnical recommendations regarding the existing dam based on the estimated soil parameters and our understanding of the project.
- G. Prepared this report presenting our findings and recommendations.

Our scope of services did not include subsequent site visits, construction observation work, attendance at meetings, or any other task not explicitly identified herein or in our proposal.

PROJECT INFORMATION AND CURRENT SITE CONDITIONS

Kingspoint Dam is located within the Kingspoint subdivision in James City County, Virginia as shown on the Project Location Map (Drawing No. 1) in Appendix "A." The dam is located

northeast of 110 Overlook Drive and is generally located on the south side of the pond. From the downstream toe, the dam appears to have a maximum height of approximately 25 to 30 feet at its center and is approximately 300 feet in length. The crest (top) of the dam is approximately 20 to 25 feet wide. The dam appears to have been constructed across a natural swale; steep natural slopes were observed on both sides of the ravine. Large trees were once present on the dam, but have recently been removed (cut even with the surface of the dam). Several large stumps were observed in the dam. The crest and downstream surface of the dam is covered with what appears to be mulch or chipped wood, which is likely the remnants of the trees. The age of the dam is unknown. Additionally, it is not known if the dam was constructed of zoned material (separate core and shell zones, each consisting of different material), or whether the dam is made of a relatively homogeneous material.

The primary spillway consists of a brick riser structure that is capped with concrete located on the right side of the pond, adjacent to the dam. (Note that the terms "right" and "left" are relative to one viewing the dam in a downstream direction. In this case, the right and left sides are the southwest and northeast sides, respectively.) The downstream slope of the dam ranges between 24° and 26°, and the upstream slope (above the pond water level) ranges from 22° to 23°. The pond water level appeared to be approximately 6 to 7 feet below the crest of the dam at the time the drilling was performed, and pond water was entering the primary spillway. A portion of the top of the spillway structure appeared to be clogged with debris.

Mature trees are present in the flat area approximately 25 feet beyond the downstream toe of the dam, and the ground in this area was saturated at the time of our site visit. Rain had fallen the day prior to drilling; however, this area may remain marshy during the wet time of the year.

A large failure zone is present on the right, downstream portion of the dam. This failure is directly over the primary spillway barrel pipe. The barrel pipe, which is made of corrugated metal, is completely severed at the bottom of the failed zone. Water is flowing through the portion of pipe that extends out of the dam. The face of the failed zone (scarp) appears to be nearly vertical, and extends up to the downstream edge of the dam's crest. No seepage was observed in the vertical face of the failed zone.

GEOLOGIC CONDITIONS

According to the geologic references cited, the site is located within the Coastal Plain Physiographic Province. The site appears to be located within the Chesapeake Group (Tc), which is comprised of several formations. The material within this group can consist of fine to coarse sand, silt, clay, variably shelly and diatomaceous.

2003 Digital Representation of the 1993 Geologic Map of Virginia, Commonwealth of Virginia, Department of Mines, Minerals and Energy, Division of Mineral Resources

FIELD EXPLORATION PROGRAM

On January 27, 2014, two (2) hand auger borings (HA-1 and HA-2) were performed at the toe of the dam. On February 4, 2014, two (2) Standard Penetration Test (SPT) borings were performed on the crest of the dam. The boring locations are shown on the Approximate Boring Location Plan (Drawing No. 2) in Appendix "A." The borings (designated B-1 and B-2) were advanced to a depth of 40 feet below the crest of the dam. The locations of the borings were recorded in the field using a hand-held GPS unit.

The borings were performed by Ayers and Ayers, Inc. of Powhatan, Virginia and were advanced using a CME 45B drill rig mounted on an all-terrain vehicle. Hollow-stem augers having an inside diameter of 2¼ inches were used. The SPT, as defined by ASTM D 1586, involves drilling to predetermined depths using hollow-stem augers, removing the center plug, and driving a split-spoon sampler with a 140-pound hammer falling 30 inches through the hollow-stem augers. The blow counts required to drive the split-spoon sampler are recorded for three successive, 6-inch increments. The last two, 6-inch increments are added together, and this value is referred to as the N-value for that particular sample. The N-value can be used to estimate the relative density of the soil (for granular soils), or the consistency (for fine-grained soils), and can be used to estimate geotechnical engineering properties. A manual hammer was used during the SPT work. Upon completion, all borings were filled and sealed with a grout consisting of a mixture of extra high yield bentonite and cement.

HAND AUGER RESULTS

Hand Auger Location	Material Encountered	Groundwater Depth	Termination Depth	Reason for Termination
HA-1 37.24095° -76.70018°	0-2': Very moist, brown, lean CLAY with sand, large stick at 2' 2'-3.4': Very moist, dark gray, silty fine to medium SAND	2.6'	3.4'	Refusal
HA-2 37.24102° -76.70008°	0-2.75': Moist to very moist, red brown to yellow brown lean CLAY with sand	2.5'	2.75'	Below water table

The results of the hand auger borings are summarized in the table below:

USDA SOIL MAP

The USDA Soil Map of this area was reviewed. A copy of this map is provided in Appendix C (Drawing No. 3). The predominant soil unit indicated was **Unit 15F** (Emporia complex, 25% to 50% slopes). The parent material is indicated to be marine deposits. Appendix C contains additional information obtained from the USDA website.

LABORATORY TESTING PROGRAM

The soil samples obtained during drilling operations were visually classified in general accordance with ASTM D 2487 (Standard Test Method for Classification of Soils for Engineering Purposes) and ASTM D 2488 (Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)). This system is also known as the Unified Soil Classification System (USCS) and was used to develop the soil descriptions presented on the logs. The logs and supplemental information regarding the USCS procedure are provided in Appendix "B."

Selected soil samples were sent to GeoTesting Express in Acton, Massachusetts for laboratory testing. Water Content determinations (ASTM D 2216), Atterberg Limits (ASTM D 4318), and Grain-size Analyses (ASTM D 422) were performed. Detailed laboratory results are included in Appendix "D" of this report and summarized below.

Location	Depth (ft.)	Water Content (%)	Liquid Limit (%)	Plasticity Index (%)	Fines Content (%)	USCS
B-1	2.0-3.5	16.2	49	28	70.6	CL
B-1	9.0-10.5	22.0	37	18	75.0	CL
B-1	14.0-15.5	17.6	25	11	61.7	CL
B-2	7.0-8.5	19.9	32	16	70.3	CL

SUBSURFACE CONDITIONS

Soil Stratigraphy

Three general soil units were encountered during our subsurface exploration program:

Unit "A":	Surficial Materials
Unit "B":	Fill (Dam Embankment)
Unit "C":	Alluvium/Marine Sediments

Unit "A" surficial materials consisted of approximately 1 to 2 inches of mulch (chipped trees). This unit was encountered in all borings locations.

Unit "B" fill soils that make up the dam embankment consist primarily of lean CLAY with sand. Occasional organic matter and wood fragments were encountered in this unit. This unit, which was encountered in borings B-1 and B-2, extends to a depth of approximately 23 feet below the crest of the dam. The Standard Penetration Test N-values ranged from 2 to 17 blows per foot (bpf), with an average value of approximately 8 bpf, which represents a "medium stiff" consistency for the cohesive soils.

Unit "C" alluvial/marine soils were encountered in all borings and consist lean CLAY (CL) with sand and clayey SAND (SC). The N-values in this unit range from 3 to 12 with an average of 6.

A detailed description of the soils encountered at each boring is presented on the boring logs provided in Appendix "B." Although the delineations between these units, as well as the delineations between the various soil strata within each unit, are depicted as a solid line on the boring logs, the transition between strata may be gradual or abrupt. BRG will retain the soil samples for 60 days, unless it is requested that they be kept for a longer period of time.

Groundwater/Seepage Line Observations

The groundwater (seepage line) was encountered at the depths/elevations shown in the table below.

	Groundwater Measurements (Depth)													
Boring	During Drilling	Upon completion (through hollow-stem auger)	Upon completion (through uncased borehole)											
B-1	Not observed	Not observed	33 ft.											
B-2	22 ft.*	Not observed	36 ft.											
HA-1	3.4	N/A	N/A											
HA-2	2.75	N/A	N/A											

*possibly perched

Long-term water level (seepage line) measurements using piezometers were not obtained. Unless long-term water measurements are made over a long period of time, it is difficult to know precisely where the water surface (seepage line) is located. The water may not simply be the point at which the soil samples have a "wet" appearance. The actual phreatic surface may be lower than the point at which "wet" soils are encountered. This is due to the presence of a saturated capillary fringe zone above the actual water level, especially common in fine-grained soils. Additionally, the soil augers typically alter the sides of the borehole (smear the sidewalls of the hole), which inhibits groundwater recharge, resulting in possible erroneous readings when taken immediately upon completion of the boring. In some cases, the groundwater that is encountered during drilling is not a static phreatic surface, but rather is under artesian pressure. Alternatively, subsurface water may be "perched" on top of an impervious stratum. Seasonal fluctuations and extended periods of drought or rain can also significantly affect the water levels.

OVERALL CONDITION OF DAM

Based on observations made at the time of our site visits, except for the large failed area, the condition of the dam generally appears satisfactory. No signs of localized slope failure or excessive seepage were noted on the downstream slope face, nor on the portion of the upstream face that is visible above pond level. The ground surface near the toe of the dam and beyond was wet; however, this appears to be the result of recent heavy rain and snowfall. The Standard Penetration Test N-values tended to be lower in boring B-2 than in boring B-1, possibly indicating that the dam may contain localized zones of weaker material. However, the dam appears to have been in place and stable for a relatively long period of time.

The dam appears capable of supporting a proposed driveway that will provide access to the property on the east side of the pond from Overlook Drive. Prior to driveway construction, the wood chips should be removed, and the subgrade thoroughly proofrolled with a fully loaded, tandem-axle dump truck to identify any soft or weak areas. All areas that pump or rut during proofrolling operations should be improved based on field conditions. This driveway appears to be the sole access point for this property, as the pond and the Colonial National Historic Parkway border the property on the west and east sides, respectively. However, if possible, it would be prudent to incorporate a secondary ingress/egress route (possible from the north) that can be used in case of an emergency.

It is recommended that the stumps and large roots present in the dam be removed and replaced with compacted structural fill as described later in this report. Roots larger than approximately one inch in diameter should be removed; however, this work should be performed as carefully as possible. It would be preferable to leave isolated roots in place rather than to damage the dam by attempting to remove roots that extend deep into the embankment. As a guide, excavations performed for the purpose of stump and root removal should be limited to a depth of approximately 3 feet.

CAUSE OF FAILURE

It is difficult to determine whether the leak in the CMP cause the failure of the downstream slope of the dam, or whether the failure resulted in the pipe becoming severed. Additionally, it is not known what impact, if any, that overtopping may have played in the failure. It seems likely that the pipe began to leak at some point, which ultimately resulted the failure of the dam.

When a buried pipe leaks, it will saturate the soil, which can significantly reduce the shear strength of the soil. Additionally, the soil that surrounds the pipe can progressively enter the pipe, which can create loss of ground, eventually resulting in a large-scale failure.

RECOMMENDATIONS

Although the failed zone of the dam is large and a significant portion of the dam has been removed, no apparent seepage was noted in the shear face of the scarp. This seems to indicate that the dam is still able to function in spite of the failure. Based on our borings, the material with which the dam was constructed (at least in the center of the dam) appears to be predominantly clay. Clay has a low permeability, which is good for controlling seepage.

The following corrective measures are recommended:

- 1. Evaluate the condition of the primary spillway, the riser pipe and the CMP barrel. This can be accomplished with video camera that can be fed both from the top, extending down the riser pipe, and up the CMP barrel from the severed portion. For best results, this work will likely have to be performed when the pond level is low, so that water is not flowing within the pipe. The camera can used to determine if the pipe is corroded, severed at any joints, or otherwise compromised. One sign of a potential future problem might be if there is an area where soil appears to be entering the pipe.
- 2. Once it is confirmed that the portions of the riser and barrel that remain in the dam are sound, the failed material at the toe of the dam can be removed. As this area is currently being inundated with water exiting the barrel, this work should be performed when the pond level is below the primary spillway. Alternatively, the water should be collected at the current discharge point and piped downstream, until the water can be conveyed within a new extended barrel.
- 3. Soft, weak soil that is currently present at the base of the failed area should be carefully removed, and the subgrade evaluated. A limited portion of the soft material can probably remain; however, this must be determined in the field. If some soft soils must remain, it may be necessary to utilize a bridge lift of large stone (e.g., VDOT No. 2 stone). It is imperative that this material be completely wrapped in geosynthetic fabric for separation. It will also be important that this excavation not undermine the existing dam in any way.
- 4. Extend the barrel and construct a proper outfall. The lower half of the barrel should be supported on a cradle of concrete or flowable fill, as it is not possible to compact around the lower portion of the pipe.
- 5. Replace the failed portion of the dam using compacted soil fill as described below.

COMPACTED FILL

Compacted fill for the dam should consist of lean CLAY with sand (CL), sandy CLAY (CL/CH), or clayey SAND (SC), providing the fines content is at least 35%. The fill should be free of organics, root matter, debris and all other deleterious material and should be placed in thin horizontal layers having a maximum loose lift thickness of 8 inches. Compacted fill placed in close proximity to the barrel extension should be placed in 4-inch loose lifts and compacted with hand tampers.

The fill should be compacted to a minimum density of 95% of the maximum dry density based on the Standard Proctor compaction test (ASTM D 698). The water content (moisture content) at the time of compaction should be within (-1) percentage point to (+3) percentage points of the optimum water content based on the Standard Proctor. Otherwise, wetting or drying the material may be necessary prior to compaction. Fill should not be placed on ground that is saturated, frozen or snow-covered.

In many cases, a soil cannot be properly compacted due to excessive moisture. If scarification and aeration is not practical, the use of lime or some other admixture can be considered to help facilitate earthwork operations.

It is typically recommended that all fill lifts be benched into existing slopes a minimum of 4 to 6 feet horizontal to help prevent the development of a smooth failure plane between the compacted fill and the existing ground (existing dam embankment). However, this must be weighed against the effect that cutting into the existing dam will have. Using a detailed survey of the failed area, it will be necessary to develop a series of steps into the existing dam that accomplish this goal while also limiting the impact to the dam.

UTILITY CONSTRUCTION

It is understood that the placement of water and sewer lines are being considered across the dam. In order to reduce the risk that the dam will be harmed by localized inundation, it will be imperative that measures be taken to keep these lines from leaking or rupturing during their service life, especially at the joints.

CONSTRUCTION INSPECTION AND SAFETY

It is strongly recommended that a qualified inspector monitor all aspects of earthwork construction, especially fill placement and moisture-density (compaction) testing. A full-time inspector can often help identify earthwork problems so they can be quickly corrected.

It is imperative that all OSHA regulations be followed. This work will be performed at the base of steep slope, and the safety of those working in this area must be maintained. It may be necessary for the contractor to utilize temporary shoring to ensure the safety of the construction crew.

LIMITATIONS

This report has been prepared specifically for Stantec/Williamsburg Environmental Group, or their authorized representatives, for the proposed Kingspoint Dam in James City County, Virginia.

The recommendations contained herein are based on the information obtained during our subsurface exploration program and our understanding of the project. If the details of this project differ from those described herein, or if any details of this project change after the date of this report, we should be contacted. Our recommendations may have to be amended as a result of the project modifications.

It is important to realize that subsurface conditions can vary (sometimes significantly) from those encountered during the subsurface exploration program. If, during construction operations, site conditions appear different than those described herein, we should be contacted. Again, our recommendations may have to be amended as a result of the conditions revealed during construction.

The report should be made available to other designers involved with the project, as well as perspective contractors bidding on the project. However, it should be known that this report is "for information only" and should not be considered part of the Contract Documents. This report was intended to provide recommendations for design only. The recommendations contained herein represent our opinions and interpretations; no other warranty, explicit or implicit, is made.

ACKNOWLEDGEMENT

We appreciate the opportunity to serve as your geotechnical engineering consultant on this project. If you have any questions, please do not hesitate to contact us at 804/357-4157 or BlueRidgeGeotech@comcast.net.

Respectfully Submitted, Blue Ridge Geotechnical, LLC

J. Michael Hall, P.E. Geotechnical Engineer/Founder

REFERENCES

Commonwealth of Virginia, Department of Mines, Minerals and Energy, Division of Mineral Resources, Publication 174, *Digital Representation of the 1993 Geologic Map of Virginia, Expanded Explanation*, 2003

USDA Soil Survey Maps (www.websoilsurvey.nrcs.usda.gov)

Army Corp of Engineers Engineering Manual (EM 1110-2-1901), September 30, 1986

APPENDICES

- Appendix A (Figures)
 Project Location Map (Drawing No. 1)
 Approximate Boring Location Plan (Drawing No. 2)
- Appendix B (Boring Logs) Boring Logs B-1 and B-2 Boring Log Interpretation (2 pages)
- Appendix C (USDA Soil Map Data) USDA Soils Map (Drawing No. 3) Map Unit Description – (15F) Emporia Complex, 25% to 50% slopes Engineering Properties (9 pages) Physical Properties (8 pages) Particle Size and Coarse Fragments (5 pages)
- Appendix D (Laboratory Test Results) (9 pages)

Appendix "A"

FIGURES

CC014 KINGSPOINT SUBDIVISION - 087

* Map obtained from Virginia.gov website

* Adapted itouchmap.com

Blue Ridge Geotechnical, LLC

12817 Church Road, Richmond, Virginia BlueRidgeGeotech@comcast.net 804/357-4157

STANTEC/WILLIAMSBURG ENVIRONMENTAL GROUP WILLIAMSBURG, VIRGINIA

APPROXIMATE BORING LOCATION PLAN

KINGSPOINT DAM JAMES CITY COUNTY, VIRGINIA BRG No. 150 FEBRUARY 2014 DRAWN BY: JMH * SCALE: AS NOTED

DRAWING NO. 2

CC014 KINGSPOINT SUBDIVISION - 089

BORING LOGS

CC014 KINGSPOINT SUBDIVISION - 090

RI	D / 1	C .	1 / 1	11	
Dlue	Kidge	Geotec	hnical,	LL	C

Boring Log

B-1 (Sht. 1 of 2)

Project: Kingspoint Dam James City County, Virginia Drilling Contractor: Ayers and Ayers, Inc. Drilling Method/Equip: HSA, 2-1/4" I.D., CME 45B ATV Rig Hammer Type: *Manual* Drill Date: 2/4/14 GS EL.: Unknown Boring Location: N 37.24099° W -76.70048°

BRG Project No.: 150

Client: Stantec

(ft.)	Material	Ň	ple	ft.)		Blow	S	au	•	• SPT N-value (bpf)			Atte	erberg	Limits				
Elev.	Description	USC	Samj	epth (6"	6"	6"	V-val		Wate	er Co	ntent	n	60		80	10		Remarks
-		-		Q	U	0	U	ř.		2	.0	40		00	,	80	10	0	~2 inches mulch on surface
	Moist, stiff, red brown, brown and gray, lean CLAY with sand, trace organic matter (occasional sticks, roots)	(F)		0.0 1.5 2.0	6	6	9	15		ſ									<u>Water:</u> -Not encountered during drilling
	(Fill)			3.5	_	7	8	15					-•						-Not encountered upon completion (through HSA) - 33 ft. (through uncased
	Moist, stiff, yellow brown and orange brown, lean CLAY with sand, trace organic matter (occasional sticks, roots)	(F)		4.0	7	6	4	10											borehole) Cave-in: 37 ft.
	Below 7': Medium stiff consistency			7.0 8.5	4	3	5	8											LL=49 PI=28 FC=70.6% w _c =16.2%
	Below 9': Tan and gray color			10.5	4	4	4	8				-•							9.0'-10.5': LL=37 PI=18 FC=75.0% w.=22.0%
	Below 14': Stiff consistency			14.0	4	5	5	10		•									$\frac{14.0'-15.5':}{LL=25 PI=11}$ FC=61.7% w _c =17.6%
	Below 19': Medium Stiff consistency, orange brown and brown color			19.0 20.5	3	2	3	5											
	(Fill) Very moist, medium stiff, brown, fine sandy lean CLAY,	(CL)		23.0 24.0	3														
	trace shell (Alluvial/Marine)			25.5		3	3	6	∣╺										
	Continued on Sheet 2			27.0				_	-	1									

	~	Bh	ie F	Ridge	• (jeo	otec	chnic	al,		C							Во	ring Lo	og
$\overline{}$		-		÷ U									-					B-1	(Sht. 2 c	of 2)
Proje BRG Clien	ct: Kingspoint Dam James City County, Vi Project No.: 150 t: Stantec	rginia	ı					Drill Drill Ham Drill GS E Borii	ing (ing N mer Date (L.: 1 ng Lo	Cont Aetl Typ e: 2 Unk ocat	tractor hod/Eq pe: <i>Mar</i> 2/4/14 kknown tion: N	: Ay Juip: nual 1 37.	yers HS 2409	and Ay A, 2-1 99° W	/ers,] /4" I. / -76.	Inc. D., (700 4	СМ 48°	1E 45B AT	'V Rig	
Elev. (ft.) Bescription Bescription					6"	Blows	s 6"	V-value	● s ▲ v	PT N Vater	N-value () r Conten	bpf) t	60	Atterb	erg Lin			Re	marks	
I	Continued from Sheet 1			A 27.0	0	0	0	~	┝┯┤	_		+0	-		50		, 			,
	Very moist, medium stiff, brown and gray, fine to medium sandy CLAY (Alluvial/Marine) Very moist, medium stiff, brown and gray, fat CLAY with fine sand (Alluvial/Marine) Very moist, medium dense, tan and gray, clayey fine to medium SAND (Alluvial/Marine)	(CL) (CH) (SC)		28.0 29.0 30.5 32.0 34.0 35.5 36.0 38.5 40.0	2	2 3 5	3 3 7	5	•											
	ьoring 1 erminated at 40.0 ft.																			

RI	D / 1	C .	1 / 1	1 1	C
Dlue	Kidge	Geotec	hnical	, LL	L

Boring Log

B-2 (Sht. 1 of 2)

Project: Kingspoint Dam James City County, Virginia Drilling Contractor: Ayers and Ayers, Inc. Drilling Method/Equip: HSA, 2-1/4" I.D., CME 45B ATV Rig Hammer Type: *Manual* Drill Date: 2/4/14 GS EL.: Unknown Boring Location: N 37.24113° W -76.70025°

BRG Project No.: 150

Client: Stantec

. (ft.)	Material	S	ple	(ft.)		Blow	s	lue		• SPT N-value (bpf)		ppf) Atterberg Limits						Damala			
Elev	Description	NSO	Sam	Jepth	6''	6"	6''	N-va	ſ	V	Vate 2	r Co 0	onten	t 40	e	•	8	0	10	0	Remarks
	Moist to very moist, stiff, red	(F)		0.0	2	4															~1 inches mulch on surface
	brown, tan and gray, lean CLAY with sand, trace organic matter (occasional sticks, roots)	(2)		1.5 2.0	3		6	10													* Spoon driven through
	Below 2': "Moist"			3.5		6	11	17	*		•										large stick
				4.0 5.5	6	6	6	12													Water:
				7.0																	-Apparent perched water at approx. 22 ft. -Not encountered upon
	(Fill)			8.5	1	2	3	5													completion (through HSA) - 36 ft. (through uncased borehole)
	Very moist, medium stiff, gray and brown, lean CLAY with	(F)		9.0	3	3	2	5													Cave-in: 37 ft.
	(Fill)			10.5			-	0													<u>7.0'-8.5':</u> LL=32 PI=16 FC=70.3%
	Very moist, soft, gray and red brown (mot.), lean CLAY , with sand	(F)		12.0																	w _c =19.9%
				14.0	1	1	1	2													
	(Fill)			15.5				2													
	Very moist, soft, gray and brown, sandy lean CLAY , trace organics	(F)		17.0																	
				19.0	1	1	2	з													
				20.5				5													
	(Fill) Very moist, soft, brown, fine	(CL)		23.0																	
	sandy lean CLAY, trace organics			24.0	1	2	1	3													
	(Alluvial/Marine) Continued on Sheet 2			25.5 27.0		_		_			_		_	╽			_	-			

	► Blue Ridge (ue Ridge Geotechnical, LLC					
			B-2	(Sht. 2 of 2)			
Project:	Kingspoint Dam James City County, Virginia	Drilling Contractor: Ayers and Ayers, Inc. Drilling Method/Equip: HSA, 2-1/4" I.D., Cl	ME 45B AT	ΓV Rig			
		Hammer Type: Manual		6			
BRG Proj	ject No.: 150	GS EL.: Unkknown					

Boring Location: N 37.24113° W -76.70025°

BRG Project No.: 150

Client: Stantec

(ft.)	Material	S	ole	ft.)		Blow	s	at	•	SPT	N-val	lue (1	opf)		At	terbe	rg Li	mits		
lev.	Description	JSC	amp	spth (-valı		Wate	er Co	ntent				<u>'L</u>				Remarks
E	Continued from Sheet 1	ſ	9 1	De	6"	6"	6"	Z		2	20	4	0	60)	8	0	10	0	
		i — —		27.0					İΤ	i Ti				Ξì	- 1	-1	-	-	Ē	/
	Vory moist modium stiff			28.0																
	brown and gray, lean CLAY,	(CL)		29.0	1															
	with sand					3		_												
				30.5			2	5	IT											
	(Alluvial/Marine)			22.0																
	Very moist, medium stiff,			32.0																
	CLAY	(CL)																		
				34.0	2															
						3	3	6												
	(Alluvial/Marine)			35.5 36.0				-	IT											
	Very moist, stiff, dark gray, fine sandy CLAY	(CL/																		
		CH)																		
				38.5	2															
	(Marine)				2	4														
	Boring Terminated at 40.0 ft			40.0			5	9		-				-	_	_	_	_		
	Doring Ferminatea ai 40.0 ji.																			

Boring Log Interpretation

The convention used to describe the soil strata on the boring logs is described below. This procedure in general accordance with ASTM D 2487 and ASTM D 2488. The soil descriptions typically follow this format:

"Moisture, Relative Density/Consistency, Color, Secondary component, PRIMARY COMPONENT, minor components and additional comments"

Moisture:	"Dry"	 Absence of moisture
	"Moist"	- Damp, but no visible water
	"Wet"	– Visible water within sample.

<u>Relative Density/Consistency</u>:

Relative Density is used to describe soils that are predominantly Coarse-Grained (Sands and Gravels). *Consistency* is used to describe soils that are predominantly Fine-Grained (Silts and Clays). Relative Density/Consistency descriptions are based on the SPT N-values as follows:

Relat	ive Density	Consistency						
	SPT N-value		SPT N-value					
Very Loose	0 - 4	Very Soft	0 – 1					
Loose	5 - 10	Soft	2 - 4					
Medium Dense	11 - 30	Medium Stiff	5 – 8					
Dense	31 - 50	Stiff	9 – 15					
Very Dense	~ 50	Very Stiff	16 - 30					
very Delise	2 50	Hard	> 30					

Primary and Secondary Components:

Soil Type in	n Terms of Sieve Size
Boulder	< 12 inches
Cobble	3-12 inches
Gravel (coarse)	$\frac{3}{4}$ " – 3 inches
Gravel (fine)	#4 – ³ ⁄4"
Sand (coarse)	#10 – #4
Sand (medium)	#40 - #10
Sand (fine)	#200 - #40
Silt	< #200
Clay	< #200

Coarse-grained soils can be classified based on their grain-size distribution (gradation curves). Fine-grained soils are classified according to their plasticity, which can be determined using performance tests (e.g., Atterberg Limits plotted on the Plasticity chart shown below).

Boring Log Interpretation (con't)

USCS (Unified Soil Classification System) Group Symbols:

USCS Group Symbols are two letter designations.

The first letter represents the primary constituent (all soil types). The second letter represents the secondary constituent (in the case of predominantly coarse-grained soils) or the second letter represents the plasticity (in the case of predominantly fine-grained soils):

Minor Components:

According to ASTM D 2488, the terms used to describe to describe the minor components are based on estimations of the quantity of that component within the sample as follows:

Term	Estimated Quantity (by weight)
"trace"	< 5%
"few"	5 - 10 %
"little"	15 - 25%
"some"	30-45%

Miscellaneous Terms:

- **PP Pocket Penetrometer**
- FC Fines Content (quantity of silt and clay)
- $w_{\rm c}$ Water Content
- LL Liquid Limit
- PL Plastic Limit
- PI Plasticity Index
- Mot. Mottled appearance

APPENDIX "C"

USDA SOIL MAP DATA

*Map obtained from websoilsurvey.nrcs.usda.gov

Primary Soil Unit:

Map Unit Symbol	Map Unit Name	Typical Profile
15F	Emporia complex, 25 to 50% slopes	0-13": Fine sandy loam 13"-58": Loam 58"-75": Sandy clay loam

James City and York Counties and the City of Williamsburg, Virginia

15F—Emporia complex, 25 to 50 percent slopes

Map Unit Setting

Elevation: 20 to 150 feet *Mean annual precipitation:* 40 to 55 inches *Mean annual air temperature:* 57 to 61 degrees F *Frost-free period:* 165 to 193 days

Map Unit Composition

Emporia and similar soils: 75 percent *Minor components:* 5 percent

Description of Emporia

Setting

Landform: Marine terraces Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Convex Parent material: Marine deposits

Properties and qualities

Slope: 25 to 50 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr) Depth to water table: About 36 to 54 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: Not prime farmland Land capability (nonirrigated): 7e Hydrologic Soil Group: B

Typical profile

0 to 13 inches: Fine sandy loam 13 to 58 inches: Loam 58 to 75 inches: Sandy clay loam

Minor Components

Johnston

Percent of map unit: 5 percent Landform: Flood plains Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

Engineering Properties

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Hydrologic group is a group of soils having similar runoff potential under similar storm and cover conditions. Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonal high water table, saturated hydraulic conductivity after prolonged wetting, and depth to a layer with a very slow water transmission rate. Changes in soil properties caused by land management or climate changes also cause the hydrologic soil group to change. The influence of ground cover is treated independently. There are four hydrologic soil groups, A, B, C, and D, and three dual groups, A/D, B/D, and C/D. In the dual groups, the first letter is for drained areas and the second letter is for undrained areas.

The four hydrologic soil groups are described in the following paragraphs:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and *plasticity index* (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Report—Engineering Properties

Absence of an entry indicates that the data were not estimated. The asterisk '*' denotes the representative texture; other possible textures follow the dash.

Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia														
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Frag	ments	Percent	age passi	ng sieve i	number—	Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
4—Beaches														
Beaches	70		0-60	Coarse sand, sand, fine sand	SP	A-1, A-3	0	0	80-100	78-100	39-80	4-35	7-9	NP
8B—Caroline fine sandy loam, 2 to 6 percent slopes														
Caroline	85	С	0-13	Loam, sandy loam, fine sandy loam	CL, CL- ML	A-4	0	0	90-100	85-100	85-100	50-90	20-30	4-10
			13-47	Clay loam, clay, sandy clay loam, sandy clay	CH, CL	A-7	0	0	90-100	85-100	80-100	35-95	25-61	7-27
			47-72	Clay loam, clay, fine sandy loam, sandy clay	CH, CL, SC, SC- SM, ML	A-4, A-6, A-7	0	0	90-100	85-100	60-100	30-95	20-61	4-27
10B—Craven fine sandy loam, 2 to 6 percent slopes														
Craven	80	D	0-9	Fine sandy loam, silt loam, loam	CL, ML, SC, SM	A-4	0	0	100	98-100	58-100	29-90	13-31	NP-10
			9-53	Clay, silty clay, silty clay loam, clay loam, sandy clay loam, sandy clay	CL, CH	A-7	0	0	100	98-100	83-100	44-95	34-61	12-27
			53-80	Sandy clay loam, sandy loam, loamy sand	SC, SC- SM, SM	A-2, A-4, A-6	0	0	100	98-100	49-100	14-55	12-38	NP-14

Natural Resources Conservation Service

Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia														
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Fragi	ments	Percent	age passi	ng sieve	number—	Liquid	Plasticit
soli name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	iiiiiit	y index
			In				Pct	Pct					Pct	
10C—Craven fine sandy loam, 6 to 10 percent slopes														
Craven	80	D	0-9	Fine sandy loam, silt loam, loam	CL, ML, SC, SM	A-4	0	0	100	98-100	58-100	29-90	13-31	NP-10
			9-53	Clay, silty clay, silty clay loam, clay loam, sandy clay loam, sandy clay	CL, CH	A-7	0	0	100	98-100	83-100	44-95	34-61	12-27
			53-80	Sandy clay loam, sandy loam, loamy sand	SC, SC- SM, SM	A-2, A-4, A-6	0	0	100	98-100	49-100	14-55	12-38	NP-14
11C—Craven-Uchee complex, 6 to 10 percent slopes														
Craven	35	D	0-9	Fine sandy loam, silt loam, loam	CL, ML, SC, SM	A-4	0	0	100	98-100	58-100	29-90	13-31	NP-10
			9-53	Clay, silty clay, silty clay loam, clay loam, sandy clay loam, sandy clay	CL, CH	A-7	0	0	100	98-100	83-100	44-95	34-61	12-27
			53-80	Sandy clay loam, sandy loam, loamy sand	SC, SC- SM, SM	A-2, A-4, A-6	0	0	100	98-100	49-100	14-55	12-38	NP-14
Uchee	35	В	0-24	Loamy fine sand, sand, loamy sand	SM	A-1-b, A-2	0	0	80-100	78-100	40-70	15-30	10-16	NP-2
			24-56	Sandy loam, sandy clay loam, clay, sandy clay	SC, SC- SM	A-2, A-4, A-6	0	0	80-100	78-100	46-100	23-95	14-52	1-22
			56-65	Sandy loam, sandy clay loam, sandy clay	CL, SC	A-2-6, A-6, A-7	0	0	80-100	78-100	46-95	23-60	18-43	3-17

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia														
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Frag	ments	Percent	age passi	ing sieve i	number—	Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y maex
			In				Pct	Pct					Pct	
14B—Emporia fine sandy loam, 2 to 6 percent slopes														
Emporia	80	В	0-13	Fine sandy loam, loam, sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-4, A-6	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Clay loam, sandy clay loam, loam, sandy loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14
15D—Emporia complex, 10 to 15 percent slopes														
Emporia	75	В	0-13	Sandy loam, loam, fine sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-6, A-4	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Clay loam, sandy clay loam, loam, sandy loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14

Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia														
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Frag	ments	Percent	age passi	ng sieve	number—	Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
15F—Emporia complex, 25 to 50 percent slopes														
Emporia	75	В	0-13	Sandy loam, loam, fine sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-4, A-6	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Loam, sandy loam, clay loam, sandy clay loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14
17—Johnston complex														
Johnston	75	A/D	0-34	Silty clay loam, silt loam, loam, fine sandy loam	CL-ML, ML, OL	A-4, A-6	0	0	100	100	70-100	40-95	13-38	NP-14
			34-60	Sandy clay loam, sandy loam, sand, fine sandy loam	SC, SM	A-2, A-4	0	0	100	100	50-90	5-55	7-34	NP-12
18B—Kempsville fine sandy loam, 2 to 6 percent slopes														
Kempsville	80	A	0-14	Fine sandy loam, sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0	0-3	90-100	85-100	51-85	26-55	12-20	NP-4
			14-55	Sandy loam, fine sandy loam, loam, sandy clay loam	SC-SM, CL, ML, SC, SM	A-2, A-4	0	0-3	90-100	85-100	51-90	26-55	18-38	3-14
			55-68	Loamy sand, fine sand, loamy fine sand, sandy loam, fine sandy loam, sandy clay loam	SM, ML	A-2	0	0-8	85-100	80-100	40-95	12-60	9-25	NP-7

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia														
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Fragi	nents	Percent	age passi	ng sieve i	number—	Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
19B—Kempsville- Emporia fine sandy loams, 2 to 6 percent slopes														
Kempsville	50	A	0-14	Fine sandy loam, sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0	0-3	90-100	85-100	51-85	26-55	12-20	NP-4
			14-55	Sandy loam, fine sandy loam, loam, sandy clay loam	SC-SM, CL, ML, SC, SM	A-2, A-4	0	0-3	90-100	85-100	51-90	26-55	18-38	3-14
			55-68	Loamy sand, fine sand, loamy fine sand, sandy loam, fine sandy loam, sandy clay loam	SM, ML	A-2	0	0-8	85-100	80-100	40-95	12-60	9-25	NP-7
Emporia	30	В	0-13	Sandy loam, loam, fine sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-4, A-6	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Clay loam, sandy clay loam, loam, sandy loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14
21—Levy silty clay														
Levy	85	C/D	0-18	Silty clay	ML, CH, CL	A-6, A-7	0	0	100	100	95-100	90-95	38-61	14-27
			18-80	Silty clay, clay, silty clay loam	ML, CH, CL	A-6, A-7	0	0	100	100	95-100	85-95	38-61	14-27

Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia														
Map unit symbol and soil name	Pct. of map unit	Hydrolo gic group	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number—				Liquid	Plasticit
					Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
29B—Slagle fine sandy loam, 2 to 6 percent slopes														
Slagle	80	С	0-9	Fine sandy loam, sandy loam, loam	SC-SM, SM	A-2, A-4	0	0-3	95-100	90-100	54-95	27-75	14-23	1-6
			9-25	Sandy clay loam, loam, clay loam	ML, CL, CL-ML, SC, SC- SM	A-4, A-6	0	0-3	95-100	90-100	72-100	32-80	18-43	3-17
			25-60	Sandy clay loam, loam, clay loam, clay, sandy clay, sandy loam, loamy sand	ML, CL, SC	A-4, A-6, A-7	0	0-3	95-100	90-100	45-100	14-95	10-52	NP-22
31B—Suffolk fine sandy loam, 2 to 6 percent slopes														
Suffolk	80	В	0-14	Sandy loam, fine sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0	0	98-100	98-100	58-85	29-55	14-23	1-6
			14-40	Sandy clay loam, sandy loam, fine sandy loam	CL, SC	A-4, A-2, A-6	0	0	98-100	98-100	58-90	29-55	16-38	2-14
			40-64	Fine sandy loam, sandy loam, fine sand, sand, loamy fine sand, loamy sand	SC-SM, SM, SP	A-1, A-2, A-3, A-4	0	0	98-100	98-100	30-80	3-50	8-25	NP-7

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Physical Soil Properties

This table shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/3- or 1/10-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure. Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates in the table are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity (Ksat) is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of organic matter in a soil can be maintained by returning crop residue to the soil.

Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in the table as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and Ksat. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook."

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

Report—Physical Soil Properties

	Physical Soil Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E	irosio actor	n s	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	Index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
4—Beaches														
Beaches	0-60	-99-	- 2-	0- 0- 2	1.35-1.85	141.00	0.03-0.05	0.0-2.9	0.0-0.1				1	220
8B—Caroline fine sandy loam, 2 to 6 percent slopes														
Caroline	0-13	-58-	-25-	15-18- 25	1.35-1.45	4.00-14.00	0.16-0.22	0.0-2.9	0.5-1.0	.32	.32	5	3	86
	13-47	-40-	-20-	20-40- 60	1.40-1.50	0.01-4.00	0.13-0.20	3.0-5.9	0.0	.24	.24			
	47-72	-35-	-20-	15-45- 60	1.40-1.55	0.01-4.00	0.11-0.17	3.0-5.9	0.0	.20	.20			
10B—Craven fine sandy loam, 2 to 6 percent slopes														
Craven	0-9	-69-	-15-	7-17- 27	1.30-1.45	1.40-14.00	0.12-0.15	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-53	-23-	-29-	30-48- 60	1.30-1.45	0.42-1.40	0.12-0.15	3.0-5.9	0.0	.24	.24			
	53-80	-57-	-18-	5-25- 35	1.35-1.60	1.40-42.00	0.08-0.14	0.0-2.9	0.0	.20	.20			
10C—Craven fine sandy loam, 6 to 10 percent slopes														
Craven	0-9	-69-	-15-	7-17- 27	1.30-1.45	1.40-14.00	0.12-0.15	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-53	-23-	-29-	30-48- 60	1.30-1.45	0.42-1.40	0.12-0.15	3.0-5.9	0.0	.24	.24			
	53-80	-57-	-18-	5-25- 35	1.35-1.60	1.40-42.00	0.08-0.14	0.0-2.9	0.0	.20	.20			

Natural Resources Conservation Service

	Physical Soil Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E	rosio	on rs	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
11C—Craven- Uchee complex, 6 to 10 percent slopes														
Craven	0-9	-69-	-15-	7-17- 27	1.30-1.45	1.40-14.00	0.12-0.15	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-53	-23-	-29-	30-48- 60	1.30-1.45	0.42-1.40	0.12-0.15	3.0-5.9	0.0	.24	.24			
	53-80	-57-	-18-	5-25- 35	1.35-1.60	1.40-42.00	0.08-0.14	0.0-2.9	0.0	.20	.20			
Uchee	0-24	-77-	-16-	3- 7- 10	1.30-1.70	42.00-141.00	0.05-0.10	0.0-2.9	0.3-3.0	.28	.28	5	2	134
	24-56	-57-	-18-	8-25- 50	1.40-1.60	4.00-14.00	0.10-0.15	0.0-2.9	0.0	.24	.24			
	56-65	-65-	-17-	12-18- 40	1.40-1.60	1.40-14.00	0.10-0.16	3.0-5.9	0.0	.24	.24			
14B—Emporia fine sandy loam, 2 to 6 percent slopes														
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			
15D—Emporia complex, 10 to 15 percent slopes														
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			

Natural Resources Conservation Service

			Physica	al Soil Prop	erties–Jam	es City and York	Counties and	I the City of Willia	amsburg, Vi	rginia	I			
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E	rosic factor	on 's	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	Index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
15F—Emporia complex, 25 to 50 percent slopes														
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			
17—Johnston complex														
Johnston	0-34	-31-	-57-	7-13- 35	1.30-1.55	14.00-42.00	0.20-0.26	0.0-2.9	3.0-8.0	.37	.37	5	5	56
	34-60	-52-	-36-	0-13- 30	1.45-1.65	42.00-141.00	0.06-0.12	0.0-2.9	0.0	.37	.37			
18B— Kempsville fine sandy loam, 2 to 6 percent slopes														
Kempsville	0-14	-69-	-22-	5-10- 15	1.30-1.40	14.00-42.00	0.08-0.14	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	14-55	-57-	-18-	12-25- 35	1.30-1.45	14.00-42.00	0.12-0.18	0.0-2.9	0.0	.20	.20			
	55-68	-71-	-17-	2-12- 20	1.35-1.65	4.00-14.00	0.12-0.18	0.0-2.9	0.0	.28	.28			

			Physica	I Soil Prop	erties–Jame	es City and York	Counties and	the City of Willia	amsburg, Vi	rginia	I			
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E	rosic factor	on 'S	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
19B— Kempsville- Emporia fine sandy loams, 2 to 6 percent slopes														
Kempsville	0-14	-69-	-22-	5-10- 15	1.30-1.40	14.00-42.00	0.08-0.14	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	14-55	-57-	-18-	12-25- 35	1.30-1.45	14.00-42.00	0.12-0.18	0.0-2.9	0.0	.20	.20			
	55-68	-71-	-17-	2-12- 20	1.35-1.65	4.00-14.00	0.12-0.18	0.0-2.9	0.0	.28	.28			
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			
21—Levy silty clay														
Levy	0-18	- 6-	-47-	35-48- 60	0.50-1.10	0.42-1.40	0.16-0.22	6.0-8.9	5.0-10.0	.24	.24	5	8	0
	18-80	- 6-	-47-	35-48- 60	0.50-1.10	0.42-1.40	0.16-0.22	6.0-8.9	1.0-3.0	.28	.28			
29B—Slagle fine sandy loam, 2 to 6 percent slopes														
Slagle	0-9	-71-	-17-	8-13- 18	1.30-1.45	14.00-42.00	0.10-0.14	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-25	-34-	-37-	12-30- 40	1.30-1.45	4.00-14.00	0.10-0.18	0.0-2.9	0.0	.32	.32			
	25-60	-34-	-37-	3-30- 50	1.35-1.60	0.01-4.00	0.12-0.18	3.0-5.9	0.0	.32	.32			

	Physical Soil Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E f	rosio actor	n s	Wind erodibility	Wind erodibility
					density	conductivity	сарасну			Kw	Kf	т	group	index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
31B—Suffolk fine sandy loam, 2 to 6 percent slopes														
Suffolk	0-14	-69-	-16-	10-15- 18	1.35-1.45	14.00-42.00	0.10-0.16	0.0-2.9	0.5-2.0	.24	.24	5	3	86
	14-40	-57-	-18-	10-25- 35	1.40-1.50	4.00-14.00	0.10-0.15	0.0-2.9	0.0	.24	.24			
	40-64	-71-	-17-	1-12- 20	1.40-1.50	14.00-141.00	0.04-0.10	0.0-2.9	0.0	.24	.24			
W—Water														
Water	_	_	_	_	_	—	_	—	_					

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Particle Size and Coarse Fragments

This table shows estimates of particle size distribution and coarse fragment content of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Total fragments is the content of fragments of rock and other materials larger than 2 millimeters in diameter on volumetric basis of the whole soil.

Fragments 2-74 mm refers to the content of coarse fragments in the 2 to 74 millimeter size fraction.

Fragments 75-249 *mm* refers to the content of coarse fragments in teh 75 to 249 millimeter size fraction.

Fragments 250-599 mm refers to the content of coarse fragments in the 250 to 599 millimeter size fraction.

Fragments >=600 *mm* refers to the content of coarse fragments in the greater than or equal to 600 millimeter size fraction.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

Report—Particle Size and Coarse Fragments

		Particle S	ize and Co	arse Fragn	nents–James (City and York Countie	es and the City of V	/illiamsburg, Virginia		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
4—Beaches										
Beaches	H1	0-60	-99-	- 2-	0- 0- 2	7	7	—	—	—
8B—Caroline fine sandy loam, 2 to 6 percent slopes										
Caroline	H1	0-13	-58-	-25-	15-18- 25	0	0	—	—	—
	H2	13-47	-40-	-20-	20-40- 60	0	0	—	—	—
	H3	47-72	-35-	-20-	15-45- 60	0	0	—	—	—
10B—Craven fine sandy loam, 2 to 6 percent slopes										
Craven	H1	0-9	-69-	-15-	7-17- 27	0	0	_	_	—
	H2	9-53	-23-	-29-	30-48- 60	0	0	_	_	—
	H3	53-80	-57-	-18-	5-25- 35	0	0	—	_	—
10C—Craven fine sandy loam, 6 to 10 percent slopes										
Craven	H1	0-9	-69-	-15-	7-17- 27	0	0	—	-	_
	H2	9-53	-23-	-29-	30-48- 60	0	0	_	_	_
	H3	53-80	-57-	-18-	5-25- 35	0	0	—	-	—

		Particle S	ize and Co	arse Fragn	nents-James C	ity and York Countie	s and the City of V	Villiamsburg, Virginia		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
11C—Craven-Uchee complex, 6 to 10 percent slopes										
Craven	H1	0-9	-69-	-15-	7-17- 27	0	0	_	—	_
	H2	9-53	-23-	-29-	30-48- 60	0	0	—	—	—
	H3	53-80	-57-	-18-	5-25- 35	0	0	—	—	—
Uchee	H1	0-24	-77-	-16-	3- 7- 10	0	0	—	—	—
	H2	24-56	-57-	-18-	8-25- 50	0	0	—	—	—
	H3	56-65	-65-	-17-	12-18- 40	0	0	—	—	—
14B—Emporia fine sandy loam, 2 to 6 percent slopes										
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	_	_
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	_	—
	НЗ	58-75	-56-	-18-	18-27- 35	0	0	0	-	—
15D—Emporia complex, 10 to 15 percent slopes										
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	_	—
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	_	_
	Н3	58-75	-56-	-18-	18-27- 35	0	0	0	_	_
15F—Emporia complex, 25 to 50 percent slopes										
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	-	_
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	-	—
	НЗ	58-75	-56-	-18-	18-27- 35	0	0	0	-	—

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

		Particle S	ize and Co	arse Fragn	nents-James (City and York Countie	s and the City of V	Villiamsburg, Virginia		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
17—Johnston complex										
Johnston	H1	0-34	-31-	-57-	7-13- 35	—	—	—	—	—
	H2	34-60	-52-	-36-	0-13- 30	_	_	—	_	—
18B—Kempsville fine sandy loam, 2 to 6 percent slopes										
Kempsville	H1	0-14	-69-	-22-	5-10- 15	0	0	0	_	—
	H2	14-55	-57-	-18-	12-25- 35	0	0	0	-	—
	H3	55-68	-71-	-17-	2-12- 20	0	0	0	—	—
19B—Kempsville- Emporia fine sandy loams, 2 to 6 percent slopes										
Kempsville	H1	0-14	-69-	-22-	5-10- 15	0	0	0	—	—
	H2	14-55	-57-	-18-	12-25- 35	0	0	0	_	—
	H3	55-68	-71-	-17-	2-12- 20	0	0	0	_	—
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	—	—
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	—	—
	H3	58-75	-56-	-18-	18-27- 35	0	0	0	—	—
21—Levy silty clay										
Levy	H1	0-18	- 6-	-47-	35-48- 60	_	_	—	_	_
	H2	18-80	- 6-	-47-	35-48- 60	_	_	_	-	_

Particle Size and Coarse Fragments–James City and York Counties and the City of Williamsburg, Virginia												
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm		
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct		
29B—Slagle fine sandy loam, 2 to 6 percent slopes												
Slagle	H1	0-9	-71-	-17-	8-13- 18	0	0	0	_	—		
	H2	9-25	-34-	-37-	12-30- 40	0	0	0	_	—		
	H3	25-60	-34-	-37-	3-30- 50	0	0	0	_	—		
31B—Suffolk fine sandy loam, 2 to 6 percent slopes												
Suffolk	H1	0-14	-69-	-16-	10-15- 18	0	0	—	_	—		
	H2	14-40	-57-	-18-	10-25- 35	0	0	—	_	—		
	H3	40-64	-71-	-17-	1-12- 20	0	0	—	_	—		
W—Water												
Water	_	_	_	_	—	—	_	—	_	—		

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

Natural Resources Conservation Service

APPENDIX D

LABORATORY TEST RESULTS

Client:	Blue Ridge Geotechnical,	LLC			
Project:	Kingspoint Dam				
Location:	Petersburg, VA			Project No:	GTX-301446
Boring ID:		Sample Type:		Tested By:	jek
Sample ID:		Test Date:	02/13/14	Checked By:	jdt
Depth :		Test Id:	288530		

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	B-1	2-3.5 ft.	Moist, yellowish brown clay with sand	16.2
	B-1	9-10.5 ft.	Moist, yellowish brown clay with sand	22.0
	B-1	14-15.5 ft.	Moist, yellowish brown sandy clay	17.6
	В-2	7-8.5 ft.	Moist, yellowish brown clay with sand	19.9

Notes: Temperature of Drying : 110° Celsius

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	j, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	2-3.5 ft.		Test Id:	288523		
Test Comm	ient:					
Sample De	scription:	Moist, yellowis	sh brown clay v	ith sand		
Sample Co	mment:					

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	9-10.5 ft.		Test Id:	288524		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay v	ith sand		
Sample Cor	mment:					

Client:	ent: Blue Ridge Geotechnical, LLC					
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	14-15.5 ft.		Test Id:	288525		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown sandy	[,] clay		
Sample Cor	mment:					

Sand/Gravel Hardness : ---

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-2		Test Date:	02/12/14	Checked By:	jdt
Depth :	7-8.5 ft.		Test Id:	288526		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay w	ith sand		
Sample Cor	nment:					

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	2-3.5 ft.		Test Id:	288519		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay w	ith sand		
Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-1		2-3.5 ft.	16	49	21	28	0	lean clay with sand (CL)

Sample Prepared using the WET method 5% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	Blue Ridge	Blue Ridge Geotechnical, LLC				
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	9-10.5 ft.		Test Id:	288520		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay v	vith sand		
Sample Cor	mment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-1		9-10.5 ft.	22	37	19	18	0	lean clay with sand (CL)

Sample Prepared using the WET method 4% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	Blue Ridge Geotechnical, LLC					
Project:	Kingspoint Dam					
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	14-15.5 ft.		Test Id:	288521		
Test Comm	ent:					
Sample Des	cription:	Moist, yellowis	h brown sandy	clay		
Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-1		14-15.5 ft.	18	25	14	11	0	Sandy lean clay (CL)

Sample Prepared using the WET method 8% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	B-2		Test Date:	02/12/14	Checked By:	jdt
Depth :	7-8.5 ft.		Test Id:	288522		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay w	ith sand		
Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-2		7-8.5 ft.	20	32	16	16	0	lean clay with sand (CL)

Sample Prepared using the WET method 4% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Kingspoint Dam Repair

Budget Estimate & Scope of Work

BANDER SMITH, LLC ~ P.O. BOX 7188 ~ RICHMOND, VA 23221 PHONE: (804) 212-2898 ~ FAX (804) 545-0812 ~ WWW.BANDERSMITH.COM

Table of Contents

Table of Contents
Dam Repair Budget Estimate 4
Technical Management5
Task No. 1 – Formal Site Inspection & Design5
Task No. 2 – Mobilization, E& S, and Water Control/Diversion
Task No.3 – Existing Structure Removal & Embankment Preparation
Task No. 4 – Slipline6
Task No. 5 – Restore Embankment 15
Task No. 6 – Demobilization, Clean-up15
Project Schedule & Submittals 16
Statement of Qualifications 17
Company Background 17
Licensing & Insurance 17
Bander Smith, LLC - Team Personnel
Cameron J. Smith – Project Manager19
Austen C. Bander – Project Superintendent19
Paul L. Wood – Project Superintendent & Lead Diver

February 27, 2014

Sent via email to chris.kuhn@stantec.com

Chris Kuhn WEG, now Stantec

Subject: Kingspoint Dam Repair Budget Estimate

Dear Mr. Kuhn,

Bander Smith, LLC is pleased to offer the following budget estimate for the repair to Kingspoint Dam. Bander Smith, LLC is a specialty contracting firm that focuses solely on dam repair and inspection. Our services draw from all facets of the construction industry but we apply those skills to the specific requirements of dam and marine construction.

We have included in this package a brief description of the work to be performed and information on our company. The estimates are based on information and pictures provided to us via email on Tuesday, February 25th, 2014.

I agree with your repair methodology outlined in your most recent email. The primary spillway outfall pipe should be evaluated with a pipe crawler system to confirm whether a slipline is possible and to accurately size the new liner pipe. The riser should also be inspected by a confined space entry penetration or the use of a drop camera system depending on the access. Once the site conditions are determined and a slipline is feasible, the outfall pipe should be rehabilitated and the downstream slope re-established. The root balls can be removed and re-compacted in conjunction with the spillway work.

The estimate provided is meant to assist the dam owner and/or future dam owner(s) with potential repairs costs. Until a formal site evaluate is made, several assumptions were made such as the size of the CMP outfall and construction access down to the dam.

Thank you for the opportunity to submit this package and please do not hesitate to contact us if you have any questions or concerns.

Sincerely,

Cameron J. Smith Owner Bander Smith, LLC P.O. Box 7188 Richmond, VA 23221 cameron@bandersmith.com

Dam Repair Budget Estimate

Bander Smith, LLC proposes to rehabilitate the dam as outlined in tasks (found under the technical management section, in two phases:

1. Phase 1 – Formal Site Evaluation (Task 1) - \$2,200.00 (FIRM PROPOSAL)

This task will allow Bander Smith, LLC to evaluate the site in more detail and determine the feasibility of the a slipline. The evaluation will not be reflective of a formal engineered design or analysis and does not include the use of divers.

2. Phase 2 – Primary Spillway Rehabilitation (Tasks 2 - 6) – \$85,000.00 - \$100,000.00

These phases will result in a fully function primary spillway system. All required permitting will be obtained before construction and is NOT included in this estimate.

Technical Management

All work will be performed by Bander Smith, LLC crews with proper insurance for dam work and experience in multiplel primary spillway rehabilitation projects. This proposal does not include any permits.

Task No. 1 -Formal Site Inspection & Design

Before any work is completed on site, the entire primary spillway will be evaluated. Important factors to determine are

- 1. Is a slipline is feasible
- 2. The condition and ID of the existing CMP
- 3. The size of the new HDPE liner
- 4. The condition of the riser and transition to new HDPE liner.

A pipe crawler system will be inserted into the outfall pipe starting on the downstream end. The water entering the riser should be controlled or completed during a period of dry weather. Water flowing into the primary spillway hampers the visual inspection. A permit confined space entry should be completed into the riser tower to determine the connection of the new outfall pipe liner into the riser. The riser should also be inspected for leaks and general stability. A brick riser structure is fairly uncommon.

Task No. 2 – Mobilization, E& S, and Water Control/Diversion

Access will be required for large equipment and concrete. Bander Smith assumes a significant amount of work will NOT be needed.

Depending on the amount of disturbance, an Erosion & Sediment control sediment plan may be required with the county. In which case, the parameters of that plan should be implemented. Regardless, E&S methods will be installed downstream to collect any muddy discharge that occurs during construction. Silt fence and straw bales will be installed where necessary.

Flows entering the pond will be accessed during initial construction. The lake will be need to be lowered several feet to provide adequate storage capacity while the slipline is being completed. Once the new liner is installed and any repairs made to the riser are finished, flows can be diverted back through the new primary spillway and discharged downstream. Pumps will be available if necessary.

Task No.3 - Existing Structure Removal & Embankment Preparation

The existing failed corrugated metal outfall pipe will be removed to stable CMP. Care needs to be taken when working around the failed embankment and a trench box may be required.

The eroded and un-compacted soils will be removed and the slopes cut back slightly. Ideally, 45 degree cuts are recommended to properly compact new soils into the existing earthen embankment. However, some concessions may need to be made due the proximity of the open cut in the embankment to the impoundment. The geotechnical report indicates good quality clay through the core of the dam which will help with the new/old soil cohesion when compacted.

The foundation conditions will need to be evaluated on site once all debris is removed.

Task No. 4 – Slipline

HDPE Pipe:

The most commonly used thermoplastic for sliplining is smooth walled HDPE pipe. HDPE pipe used for sliplining should meet the requirements of ASTM D 2447, D 3035, and F 714. The service life for HDPE pipe is 50- to 100-year service life.

HDPE pipe is very smooth. While the insertion of a new HDPE slipliner results in a smaller flow area, the reduced friction of the water passing through the slipliner results in only minimal losses of hydraulic capacity, if any. Typically, a new, smaller diameter HDPE slipliner has a hydraulic capacity equal to or greater than the original conduit. For example, the Manning's "n" value for smooth walled HDPE pipe is 0.009, compared to 0.010 for steel, 0.013 for concrete, and 0.022 for CMP.

Bander Smith, LLC proposes to line the existing CMP outfall with either an 18 inch DR26 or DR21 HDPE pipe. From the pictures, the existing CMP appears to be 24 inches. The pipe dimensions can be found in the chart below.

BANDER SMITHLLC

PE 3406/3606		DR 21 (80 psi)				DR 26 (64 ps		DR 32.5 (50 psi)		
PIPE SIZE	AVG. O.D.	MIN. T.	AVG. LD.	WEIGHT LB/FT	MIN. T.	AVG. LD.	WEIGHT LB/FT	MIN. T.	AVG. LD.	WEIGH
3	3.500	0.167	3.146	0.77	0.135	3.214	0.63	0.108	3.271	0.50
4	4.500	0.214	4.046	1.26	0.173	4.133	1.03	0.138	4.207	0.83
5%	5.375	0.256	4.832	1.80	0.207	4.936	1.47	0.165	5.025	1.18
5	5.563	0.265	5.001	1.93	0.214	5.109	1.57	0.171	5.200	1.27
6	6.625	0.315	5.957	2.73	0.255	6.084	2.23	0.204	6.193	1.80
7	7.125	0.339	6.406	3.16	0.274	6.544	2.58	0.219	6.661	2.08
8	8.625	0.411	7.754	4.64	0.332	7.921	3.79	0.265	8.063	3.05
10	10.750	0.512	9.665	7.21	0.413	9.874	5.87	0.331	10.048	4.75
12	12.750	0.607	11.463	10.13	0.490	11.711	8.26	0.392	11.919	6.67
14	14.000	0.667	12.586	12.22	0.538	12.859	9.96	0.431	13.086	8.05
16	16.000	0.762	14.385	15.96	0.615	14.696	13.01	0.492	14.957	10.50
18	18.000	0.857	16.183	20.20	0.692	16.533	16.47	0.554	16.826	13.30
20	20.000	0.952	17.982	24.93	0.769	18.370	20.34	0.615	18.696	16.41
22	22.000	1.048	19.778	30.18	0.846	20.206	24.61	0.677	20.565	19.86
24	24.000	1.143	21.577	35.19	0.923	22.043	29.30	0.738	22.435	23.62
26	26.000	1.238	23.375	42.14	1.000	23.880	34.39	0.800	24.304	27.74
28	28.000	1.333	25.174	48.86	1.077	25.717	39.88	0.862	26.173	32.19
30	30.000	1.429	26.971	56.12	1.154	27.554	45.79	0.923	28.043	36.93
32	32.000	1.542	28.730	63.84	1.231	29.390	52.10	0.985	29.912	42.04
34	34.000	1.619	30.568	72.06	1.308	31.227	58.81	1.046	31.782	47.43
36	36.000	1.714	32.366	80.78	1.385	33.064	65.94	1.108	33.651	53.20
42	42.000	2,000	37.760	109.97	1.615	38.576	89.71	1.292	39.261	72.37
48	48.000	2.286	43.154	143.65	1.846	44.086	117.18	1.477	44.869	94.56
54	54.000	2.571	48.549	181.75	2.077	49.597	148.33	1.662	50.477	119.7
63	63.000	3.000	56.640	247.42	2.423	57.863	201.88	1.938	58,891	162.8

Eagle" PE sales at (800) 621-4404 for availability. * All dimensions are in inches unless noted otherwise.

O.D. : Outside Diameter

T. : Wall Thickness

HDPE Pipe

ISCO HDPE Product Catalog

Important Standards for High Density Polyethylene (HDPE) Pipe

Standards important for HDPE pipe relate to the resin the pipe is made from and the standards related to manufacturing sizes and tolerances. The American Society of Testing Materials (ASTM) standard for resin from which the pipe is made is ASTM D 3350-05, Standard Specification for Polyethylene Plastics Pipe and Fittings Materials. This standard defines the physical properties of the resin that the pipe is made from.

Pipe dimensions and manufacturing requirements:

ASTM F 714-05 Standard Specification for Polyethylene (PE) Pipe (SDR-PR) Based on Outside Diameter. This standard is used for most large diameter HDPE pipe (4° to 63") applications other than gas pipe.

ASTM D 2513-05 Standard Specification for Thermoplastic Gas Pressure Pipe, Tubing and Fittings. Polyethylene pipe and other plastic for natural gas distribution are described in great detail in this standard.

ASTM D 3035-03a Standard Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter. Most HDPE water tubing (1/2 inch to 3") is made to the dimensions in this standard. While pipe sizes up to 24" are provided, very little large diameter pipe is made to this standard.

Intallation Standards:

ASTM D 2321-05 Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity Flow Applications

ASTM D 2774-04 Standard Practice for Underground Installation of Thermoplastic Pressure Piping

ASTM F 1962 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit under Obstacles, Including River Crossings

ASTM F 585-94 Standard Practice for Insertion of Flexible Polyethylene Pipe into Existing Sewers

American Water Works Association Standards

ANSI/AWWA C 901-2005 Polyethylene Pressure Pipe and Tubing .5 in (13 mm) Through 3 in. (76 mm) for Water Services

ANSI/AWWA C 906-2006 Polyethylene Pipe and Fittings, 4 in (100 mm) Through 63 In (1,575 mm) for Water Distribution

Pipe Joining Standards:

ASTM F 2620 - Standard Practice for Heat Fusion of Polyethylene Pipe and Fittings

ASTM D 2657 - Standard Practice of Heat Fusion Joining of Polyolefin Pipe and Fittings

ASTM F 1290 - Standard Practice for Electrofusion Joining Polyolefin Pipe and Fittings

Fitting Standards

ASTM D 3261 Standard Specification for Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Butt Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (PE) Plastic Pipe and Tubing

© Copyright 2007 ISCO Industries, LLC. All Rights Reserved.

SCO

ASTM F 1055 Standard Specification for Electrofusion Fittings for Outside Diameter Controlled Polyethylene Pipe and Tubing

1-800-345-ISCO

www.isco-pipe.com

11

				ISCO HDPE	Product Catalog				
	Specifications for HDPE I	Pipe			and A STREET, Dates				
	The physical properties of high-density polyethylene pipe are described using ASTM D 33 05, "Standard Specification for Polyethylene Plastic Pipe and Fittings Materials". Recent								
	this standard was chanted. The two key areas chanted are, density and clow crack drowth								
	In the 05 version, the cell classifications for density were increased from four cells to seven								
and the second se	cells defining the density ranges for various resins. New high performance bimodal resins, PE 4710 resins, have higher PENT test values. Slow crack drow properties can now be defined using aight calls.								
The second se									
	crace grow properties can i	DOW DO	e denned using e	ight cents.					
HDPE Pipe	As of December 2006, most HDPE pipe is made from resin with a cell classification of Pf 345464C. The pipe is labeled as PE3408/3608. The physical properties for PE 345464C ar								
	PROPERTY VALUE	8	PECIFICATION	UNIT	NOMINAL VALUE				
		221-2	Diverse years		house				
	Material Designation		PPI/ASTM		PE3408				
	Material Designation		PPI/ASTM		PE 3408/3608				
	Cell Classification	115	ASTM D 3350	1975	345464C				
	Density	(3)	ASTM D 1505	g/cm3	0.941-943				
	Meit Index	(4)	ASTM D 1238	gm/ 10 min	0.0511				
	Tansile Strength	(0)	ASTM D 698	psi	3 900				
	Activity for cullen	(4)	ADTA D GOD	had	almon.				
	Slow Crack Growth								
	ESCR		ASTM D 1693	hours in 100% igepal	>5,000				
	PENT	(6)	ASTM F 1473	hours	>100				
	HDB @ 73 deg F	(4)	ASTM D 2837	psi	1,600				
	UV Stabilizer	(0)	A81M D 1003	740	2 90 2.5%				
	The density provided is without earbon black. Typical HDPR pipe has a density of 1898 to 1877 with earbon black								
	Terror of Debusikelana Dire								
	Types of Polyethylene Pipe All polyethylene (PR) is not the same. In ASTM D 9350.05, low density PR is do								
	All polyeurgiene (FE) is not the same. In ASIM D 3350-06, low density PE is de ing a density range of 0.919 to 0.925 g/cc; medium density has a range of 0.926 (
	and high density is defined	with a	a range from 0.94	1 to 0.955. All densities	s are without car-				
	bon black.								
				onau shan a sansan s	an ester statement				
	Density influences key properties in polyethylene materials. As the density increases, i tensile strength increases; also chemical resistance increases.								
	Medium density PR resins have been used for eas distribution. This original soluction wa								
	Meduum density PE resins have been used for gas distribution. This original selection was made based on superior slow crack growth properties of medium density resins. Medium density pipe is designated as PE 2406 and PE 2708.								
		112	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Sector W.				
	Today new bimodal resins are being used in gas distribution because of higher pressure rat- ings plus superior slow crack growth. These resins are designated PE 3408, PE 3608, PE								
1-800-345-ISCO	5100, PE 5110 ABI PE 4110.								
www.isco-pipe.com	0								
12	2 © Copyright 2007 ISCO Industries, LLC. All Rights Reserved.								
			1.85Q						
			M ALAS						

Existing spillway preparation:

The existing CMP spillway will be flushed with water and all dirt and debris removed. Spacers will be installed on the new 18 inch HDPE pipe every 10 to 15 feet. Flotation of the liner is a concern when a liner is to be grouted. The spacers will be staggered and spaced out to allow grout to fill the entire annular space around the pipe.

HDPE Joints:

Bander Smith, LLC anticipates joining the new spillway pipe using heat fusion. The primary spillway at Kingspoint dam may only require one joint. The HDPE will be delivered to the site in either 40 or 50 foot sections. Heat fusion (ASTM D 2657) is a widely used and industry-accepted method for joining sections of smooth solid walled HDPE pipe. This method produces a joint that is watertight and is as strong as or stronger than the HDPE pipe material itself. The use of fusion machine operators who are skilled, knowledgeable, and certified by the manufacturer will produce a good quality joint

Heat fusion creates a continuous joint-free pipe of nearly constant outside diameter. Because the HDPE slipliner joint does not take up a large part of the original conduit, a larger inside diameter slipliner can be used.

Bulkhead & Thrust Block:

Bulkheads will be installed on the upstream and downstream side of the outfall pipe. The bulkhead will consist of anti-shrink concrete packed approximately 2 to 3 feet into the annular space between the old and new pipes. Vent ports will be installed on the bottom, middle, and top of the bulkhead to insure a complete grouting has occurred. A 2 inch diameter steel injection port will be installed at the top of the downstream bulkhead. Once all vent ports have passed grout and closed, the grouting operation is complete.

Figure 1 – Typical Grout injection port and vent ports

Grouting:

Careful grouting of the annular space between the existing conduit and the HDPE slipliner is essential. This can be a complex process, requiring the experience of a qualified contractor. The HDPE slipliner is typically designed to withstand all internal and external loadings independently from exterior conditions. A lightweight, low density grout containing no aggregate will ensure the best result. Usually the material used is a Fine grout ("flowable fill") amended with Tetraguard AS20 (anti-shrink) & super plasticizer. Depending on the conditions, additional admixtures may be required to obtain desired performance such as cellular grout.

ALLIEDconcre	ete compa	ny	it i				<u></u>	1			
		<u> </u>				DATE	1/15/13			SPECIFICATION REFERENCE	
MIX DESIGN	BC010							+	-		
CALCULATION	Non-shrin	k arout			MIX VERIEICATION-				Specification #	0031 33 73	
PROJECT USE: pipe annulue fill with intraplact N					Mix experience: none/ supplier provided mix						
					Mix is in compliance with ACI 301, Sect. 4.2.3.3c, "Required				28 daystrength:		
PROJECT	ROJECT Ragged Mountain Dam					average Compressive strength" when using Sect 4.2.3.4b				1-entrained air content:	no added air
CONTRACTOR	Thallo					Trial Ma	the section of the sect	hlich misture o	mentione (ACL211.1)	2 wateriegement ratio	<0.50
CONTRACTOR	mane	- 3		25/		THAI MO	intes in est	souse maxure p	T	2-water/cement ratio.	20.00
MATERIAL	ANOTHER	DIVISOR I	ARSIVAL	TRATCH	MATERIAL		STEPTIED	SPEC		d.Pozrolao% of total com	<33%
CEMENT/bros I/III	500	108.8	2.54	25	CEMENT	I EHIG	HUNION RE	HDGE MD/AST	DM C 150	5. Slupp: /hefore/after HPWP)	
KOMPONENT (type K)	0	196.6	0.00	0	TYPE K	CTS CEN	MENT/Type H	/ Cypress.Cali	E.	before	<6"
FLY ASH	250	151.6	1.65	13	FLY ASH	BORA	LICHESAPE	AKE, VA / C61	8	after	15.0
ENT. AIR	3.00%	0.0	0.81		MB-AE90	MSTR	BLDRS/AST	M C260	-	6-special additives:	5
C.AGG.(#8)	0	176.0	0.00	0	C.AGG(57)	MARTI	MARTIN MARIETTA/RED HILL, VA/ASTM C33 AVLETT S & G/AVLETT VA/ASTM C33		add Intraplast N at site: 7.5#/	vard	
F.AGG.(#2)	D	169.7	0.00	0	F.AGG(#1)	AYLET					
WATER(GAL)	41.25	CT-FAC	5.51	2	CITY	POTAE	BLE				1
WATER(LBS)	343.6125		L. Services		F.AGG(#2)	VULCA	N/ ASAND	STAUNTON,V.	A/ASTM C33	Mix design logic/back-up	supplier provided mix
MOR_FRAC.	27.00	TOTAL	10.51		MFG.SAND	MARTI	N MARIETT/	VC'VILLE	- 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900	1-curve:	no
	96 3		S		LTWTA	SOLITE	E/CASCADE	PLANT/ASTM	C330	2-experience(30 breaks)	no
		REMAINING			1970 - 1970 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1970 -			8	1		
W.C. RATIO	0.46	VOLUME	16.49	S ()						3-special:	
(specification:	<0.5					ACI Tabl	le 4.2.1-Expo	isure categorie	es and classes		
	-					FO	no expo	sure			
FINE AGG.(#1)	2696	163.5	16.49	135			1				
10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	2696		16.49		8	1	8				
		in the second				SPE	ECIFIC GRAV	/ITY INFO 1/12		REVIEW COMMENTS:	
	38 8	TOTAL FOR	1		STONE	2.8	2 34* NOMINA	VL)			
		SAND PLUG	27.00	1	SAND	2.6	2 (F.M. =2.8)	1			
	3.3 8	OUCORINO	0.00	1	SAND(#2)	2.1.	2	-			
	200 00	UVEROUND	0.00		STALITE	1.0	1				
TOTAL WT/VD	2790		- 3	400	OFGRVL	ADSC	4			NOTES	
TOTAL WITTE	3130		2 3	103	STONE*	0.50%	(85 8 #57)		-	NOTES.	
UNIT WEIGHT	140.35	(@3% air)			SAND*	0.49	6	1			
	and the second		Q 2	8 3	STALITE	8.05	6	1			12
	#/cu ft.	air			"stone &	sand mee	tASTM C33				
	지 않는 것		8 3	6	i	arren are	Renard and				1992 - Contract - Cont
	12 - 13 13		ic 3			DESIGN	SLUMP = 4	-6"			
	3.8 8		5 2				12				1
						F_ASH/C	EM :			1927	K
ADMINTUPE	001500	total and und	-	_		12/2	1	1			÷.
ADMIATURES	02/100	total oziyard		0			00 PACE IAS	TM C 260			
(PWP(222n)	0	0.00		0	I DIALD	PO77IL IT	BUIDHOF/AS	FIASTM C ADA	-		
ACCEL/NC	0	0.00	5 0	0	ACC/N	C 534/BA	SE/ASTM C	194	-		
RETARDER	0	0.00	-	0	RETAR	D/961 R/	BASE/ASTM	C 494			
HRWR(PLAST)	0	0.00	15 X	0	HRWR	GLENIU	M 7500/BASE	ASTM C 494			
FIBER(Micro)	0	0	5 - 3	-	Master	Fiber F70/BASF/ASTM C 1116		CAMARE			
FIBER(Macro)	0	0 0 MasterFiber MAC100/BASF/ASTM C 1116				Sector Street					
INTEGRAL WATERPRI	F O	0.00	S - 5	5 C	RHEOM	MAC 300E	D/BASF/Modi	fied DIN 1048/A	STM 1585	GUUUNIE	5 5 5 6 .
SHRINKAGE COMP.	1%	7.5#/yd	-		S.I.K.A	Corplint	raplast N/Ne	w Jersey			
CORROSION INHIB	0	0.00	2 3		RHEO	CRETE CI	NI/BASF/C49	4 type S		1000 Harris Street	
INTEGRAL COLOR	0	0.00			RHEO	COLOR	BASF/ASTN	C 979		Charlottesville, Virginia 22903	
			S 8			-		-		(ph)434-296-7181	
				-		-	-	-		(fx) 434-296-3200	
		- 3					13			www.alliedconcrete.com	1

Page 12 of 20

CC014 KINGSPOINT SUBDIVISION - 144
Intraplast-N®

Expanding / Fluidifying Grouting Aid

Description	Intraplast-N is a balanced blend of expanding, fluidifying, and wa for portland-cement grouts. It produces a slow, controlled expans hardening.			
Applications	 Machinery base p 	lates.		
	 Pre-packed aggre 	gate cavities.		
2	 Rock fissures and 	bolting.		
Benefits	 High fluidity - Intraj cohesive. 	plast-N grout is extremely fluid, workable, non-settling, and		
	 Versatile - use Intra cement, with or wit aggregate. 	aplast-N with all types of grout incorporating Type I, II, or III thout pozzolanic materials or fly ash, and with or without fine		
	Controlled, gaseou close contact with	is expansion occurs before initial set and forces the grout into the surrounding surfaces.		
Packaging	50 lb. multi-wall bag.			
	Typical Data Materia RESULTS MAY DIFFER BASED UPO TEMPERATURE, APPLICATION ME	al and curing conditions @ 73°F (23°C) and 50% R.H. ON STATISTICAL VARIATIONS DEPENDING UPON MIXING METHODS AND EQUIPMENT, THODS, TEST METHODS, ACTUAL STE CONDITIONS AND CURING CONDITIONS.		
	Shelf Life	6 months in original, unopened bags.		
	Storage Conditions	Store dry at 40-95°F		
	Color	Gray powder		
	Dosage	Add 1% by weight of cementitious material, (portland- cement and, if used, fly ash)		
How to Use				
Forming	Where areas to be grou using Intraplast-N grout duce the highest possibl there are open areas. U physical characteristics.	ted require forming, forms should be tight and well fitted. When , expansion of the grout should be restrained in order to pro- le density, bond, and strength. Top forms should be used where informed, exposed grout placements will have substantially lower		
Mixing	a) Water should be a admixture, and sa	dded to the mixer first, followed by portland-cement, fly ash, nd as required.		
	b) Mixing should be a grout, without exce	of such duration as to obtain a uniform, thoroughly blended essive temperature increase.		
	c) No water should be lost by delayed use	e added to the grout to increase any flowability which has been e of grout.		
R	 d) It is essential that t water content shou material. 	the water content of the grout be kept as low as possible. The old generally be less than 5.25 gal./100 lb. of cementitious		

		Size of Openings			
	Product	1/4 in. or	less	Larger t	han 1/4 in.
	Cement ¹	2 parts	1 part	2 parts	1 part
	Fly Ash ²	1 part	none	1 part	none
	Sand ³	none	none	3 parts	1 part
	Water₄	4-5	4-5	41/2-51/2	41/2-51/2
	Intraplast-N⁵	1%	1%	1%	1%
	¹ ASTM C-150; ² ASTM C-350; ³ 100% passing an 8-mesh sieve; ⁴ Gallons per 100 lb. cementitious material; ⁵ By weight of cementitious material.				
	Water requirements wil	l typically be lower the	an that of a r	on-Intraplast	-N mix of equ
Application	All pumps and hose fittings should be absolutely watertight to prevent loss of water and subsequent clogging. Be sure your batches are so limited in size that placeme can be completed within one hour so that as much of the expanding action as poss occurs after the grout is placed.				
Typical mix designs	The following typical mix designs serve only as a basis for trial mixes. Actual mix design must be tested prior to use. Proportions are by weight, unless noted.				
Limitations	 Design mixes should always be tested to verify satisfactory performance, specially as it relates to strength, bleed, flow and segregation. The use of this admitture will alter physical properties. 				
	 Not recommended as a non-shrink admixture for conventionally placed concre 				
Caution					
Irritant	Skin and eye irritant. Avoid contact. Dust may cause respiratory tract irritation. Avoid breathing dust. Use only with adequate ventilation. Use of safety goggles and chemical resistant gloves is recommended. If PELs are exceeded, an appropriate, properly fitted NIOSH approved respirator is required. Remove contaminated clothing.				
First Aid	In case of skin contact, wash thoroughly with soap and water. For eye contact, flush immediately with plenty of water for at least 15 minutes, and contact a physician. For respiratory problems, remove person to fresh air.				
	respiratory problems, remove person to fresh air. In case of spillage, scoop or vacuum into appropriate container, and dispose of in cordance with current, applicable local, state, and federal regulations. Keep conta				

Maintenance:

No maintenance is typically required for the HDPE sliplined conduit, unless the conduit requires some type of cleaning. Periodic operation of the conduit usually is sufficient to flush sediments through the system. HDPE pipe is smooth and generally resists the adherence of sediment deposits.

Task No. 5 – Restore Embankment

The new liner will need a pipe cradle installed along its path to the plunge pool. It is recommended to install a filter drain around the outfall pipe as well. This would be fairly easy to complete since the downstream embankment is already open. The filter drain would consists of a combination of a sand and stone filter media with geotextile and 4 inch PVC pipe to collect the water.

Bander Smith, LLC will backfill and compact around the new outfall pipe to match the existing grade.

Several tree roots were noted in the geotechnical report. The root balls will be removed, backfilled, and compacted.

Task No. 6 - Demobilization, Clean-up

All denuded areas will be repaired, seeded, and straw placed. Once all vegetation is established, we will remove any E&S that is in place. All equipment will be removed and the access road returned to near pre-existing conditions.

Project Schedule & Submittals

Below is a general work schedule for the project

- 1. Bander Smith, LLC Pipe Inspection
- 2. Engineer Evaluation and Design
- 3. Owner Approval
 - a. Financing Established
 - b. Proposal Review and Approval
- 4. Contract Executed
- 5. Notice to Proceed Issued
- 6. Material Procurement
- 7. Construction

We respectively request the contract time be at least 60 days from the Notice to Proceed. We anticipate approximately 4 weeks of material procurement and fabrication. Installation on site should take an estimated 20 days with the majority of the work/disturbance occurring over 15 days.

This type of work, especially when working in a live watercourse, is heavily weather dependent.

Shop drawings will be submitted for each major item and owner approved before installation.

Statement of Qualifications

Company Background

Bander Smith, LLC was formed in 2009 to address the ageing dam infrastructure in Virginia and the surrounding states. Dams have unique challenges and Bander Smith meets them with an in-depth knowledge of the techniques, laws, regulations, and safety concerns related to work on impounding structures.

Our team has over 15 years of experience in the dam repair industry. Bander Smith, LLC is owned & operated by Cameron Smith and Austen Bander. We are located centrally in the Commonwealth of Virginia with our main office in Richmond, VA.

***Dams introduce variables to ordinary construction activities and the dynamics of a dam must be understood before safe, proper repairs are made.

Licensing & Insurance

We are a licensed Class A Contractor in Virginia (License No. 2705129060). We are also a DMBE certified SWAM vendor. License Number 679769.

We have commercial general liability insurance that specifically includes coverage for projects on dams, which, unfortunately, many firms working on dams do not have. This is very important for the client who is ultimately responsible if the contractor is under insured.

CORD					BANDE-	DATE	OP ID: CV
CEL	RTIFIC	ATE OF LIA	BILITY IN	SURA	NCE	07	/03/2013
THIS CERTIFICATE IS ISSUED AS	A MATTER	OF INFORMATION ONL	Y AND CONFERS I	IO RIGHTS	UPON THE CERTIFICA	TE HO	LDER. THIS
CERTIFICATE DOES NOT AFFIRM	ATIVELY O	R NEGATIVELY AMEND	EXTEND OR ALT	ER THE CO	VERAGE AFFORDED	BY TH	E POLICIES
BELOW. THIS CERTIFICATE OF	NSURANCE	DOES NOT CONSTITU	JTE A CONTRACT	BETWEEN 1	THE ISSUING INSUREF	R(S), A	UTHORIZED
REPRESENTATIVE OR PRODUCER	AND THE C	CERTIFICATE HOLDER.					
IMPORTANT: If the certificate hold the terms and conditions of the pol certificate holder in lieu of such end	er is an AD cy, certain orsement/s	DITIONAL INSURED, the policies may require an e).	e policy(les) must bi endorsement. A sta	e endorsed. tement on th	If SUBROGATION IS V is certificate does not	CONTER), subject to rights to the
KODUCER		Phone: 804-794-8000	CONTACT		20.51C		
emier Insurance Agency Ltd 321 J Midlothian Turnolke		Fax: 804-794-9077	PHONE FUR		PAX (A/C, Not	8	
diothian, VA 23113			E-MAIL ADDIESS:				
emier Insurance Agency, Ltd			INC	URER(6) AFFO	IDING COVERAGE		NAK: #
			INSURER A : Gemini	Insurance	Company		
Bander-Smith, LLC			INSURER B : AmGua	rd Insuran	ce Co.		1
Austen Bander			INSURER C : Harleys	ville Insura	ance Company	į	23582
PU Box 7188 Richmond VA 22224			INSURER D :		66 - 62	- i	3
Normond, YA 20221			INSURER E :				
			INSURER # :			1	-
OVERAGES C	ERTIFICAT	E NUMBER:		2	REVISION NUMBER:		
THIS IS TO CERTIFY THAT THE POLIC	IES OF INSU	RANCE LISTED BELOW HA	AVE BEEN ISSUED TO	THE INSURE	ED NAMED ABOVE FOR T	HE POI	LICY PERIOD
INDICATED. NOTWITHSTANDING ANY CERTIFICATE MAY BE ISSUED OF M	REQUIREME	THE INSURANCE ASSOCI	OF ANY CONTRACT	OR OTHER	DOCUMENT WITH RESPE	CT TO	WHICH THIS
EXCLUSIONS AND CONDITIONS OF SU	CH POLICIES	LIMITS SHOWN MAY HAVE	E BEEN REDUCED BY	PAID CLAIMS.		-	ine renna,
R TYPE OF INSURANCE	ADOL SUB	POLICY NUMBER	(MINDONYYTY)	(MM/DOCTTYY)	LIMI	18	
GENERAL LIABILITY		- 1200 March 1900	575367004503		EACH OCCURRENCE	5	1,000,00
X COMMERCIAL GENERAL LIABILITY		VIGP014317	07/28/2012	07/28/2013	DAMADE TO RENTED PITEMISES (En popureron)	5	50,00
CLAIMS-MADE X OCCUR		10000000000000000000000000000000000000			MED EXP (Any one person)	5	5,00
	88				PERSONAL & ADV INJURY	1	1,000,0
	-				GENERAL AGGREGATE	5	2,000,00
GENS AGGREGATE LIMIT APPLIES PER-	<u> </u>			1	PRODUCTS - COMPVOP AGO	1	2,000,00
X POLICY PRO-						5	
AUTOMOBILE LIABILITY	8 38 3		S 8		COMBINED SINGLE LIMIT	5	1,000,00
ANY AUTO		BA00000072471H	10/11/2012	10/11/2013	BOOLY INJURY (Per perion)	5	
ALL OWNED X SCHEDULED					BODILY INJURY (Per acident)	5	
HIRED AUTOS AUTOR					PROPERTY DAMAGE (Per appident)	8	
						5	
UNBRELLA LIAB OCCUR	- e - e - i	64C	a a		EACH OCCURRENCE	5	
EXCESS LIAB CLAING-M	DE				AGGREGATE	5	
DED RETENTIONS	- 12 - 12 - 13 - 13 - 13 - 13 - 13 - 13	6	3 8			5	
WORKERS COMPENSATION		1.45 Sec		1.010.00	X WC STATU-		
ANY PROPRIETOR PARTNER/EXECUTIVE	N	R2WC361064	10/17/2012	10/17/2013	EL EACH ACCIDENT	5	100,00
(Mandatory in NH)	N/A	1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 -	0.01100.000000	1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	EL DISEASE - SA EMPLOYER	5	100,00
If yes, describe under DESCRIPTION OF OPERATIONS below	8 48 1		S		EL DISEASE - POLICY LINET	1	500,00
			n n				
SCRIPTION OF OPERATIONS / LOCATIONS / VE	HICLES (Attach	ACORD 101, Additional Remarks	Schedule, if more space is	(berluper	8		
idison Evans Water Treatme	nt Plan,	Chesterfield Cour	nty, VA				
ERTIFICATE HOLDER			CANCELLATION	2			
		SAMP000	THOM D ANY CO.			ANOT	ED PERSON
			THE EXPIRATION	DATE TH	EREOF, NOTICE WILL	BE DE	LIVERED IN
Sample ########	*****		ACCORDANCE W	TH THE POLIC	Y PROVISIONS.		
Janpe							
Taractera and a rest at a rest at a rest	AUTHORIZED REPRESENTATIVE						
**********			AUTHORIZED REPRESE	NTATIVE	164		

Bander Smith, LLC - Team Personnel

Key personnel for Bander Smith, LLC that will be on site for the inspection

Cameron J. Smith - Project Manager

Cameron Smith is a founding partner of Bander Smith, LLC and Project Manager. Mr. Smith graduated from Virginia Tech in 2004 with a degree in building construction and a minor in Real Estate. Prior to the formation of Bander Smith, LLC, Cameron Smith had over 8 years experience in the dam repair and inspection industry, working his way up to Project Manager and Vice President before pursing his own firm.

He has completed over 200 dam repair and inspection projects across the eastern half of the United States. He holds a current VA contractor's license as well as a private pilot license. He is also trained and certified in confined space entry.

Austen C. Bander – Project Superintendent

Austen Bander is a founding partner of Bander Smith, LLC and Project Superintendent. Mr. Bander graduated from Randolph-Macon College in 2004 with a degree in Physics and a minor in Astrophysics and Spanish. Prior to the formation of Bander Smith, Austen Bander had 6 years of experience in the dam repair and inspection industry.

Mr. Bander is currently designated an Engineer-in-Training in Virginia and actively pursuing a Professional Engineer's License.

Paul L. Wood - Project Superintendent & Lead Diver

Mr. Wood has over twenty five years of diving inspection and construction experience. During his 10 year career in the U.S. Navy, Mr. Wood conducted over 1,000 dives. After being honorably discharged from the Navy, Mr. Wood was employed by various commercial dive contractors, prior to starting his own company to provide diving inspection and related work. Mr. Wood is experienced in all aspects of diving operations, including air diving, mixed gas diving, SCUBA, surface air supplied and hyperbaric chamber operations. Mr. Wood has performed underwater inspections on all types of construction including wood, steel and concrete for bridges, piers, bulkheads, and wharfs. Mr. Wood is experienced in dealing with hazardous conditions including low visibility, confined space, high current, low temperature, and altitude diving.

Education & Certification:

- Association of Diving Contractors Surface Air Diving Supervisor (#8112)
- National Highway Institute Safety Inspection of In-Service Bridges (#13055) / 2004
- Int'L Association of Nitrox & Technical Diving (2001)
- Advance Rescue Diver (1996)
- Dive Control Specialist (1990)
- o U.S. Navy 2nd Class Dive School / 1989 / Honor Graduate
- U.S. Navy Explosive Ordinance Disposal School / 1985 / Honor Graduate
- o U.S. Navy SCUBA Dive School / 1984

County Attorney's Office 101-D Mounts Bay Road P.O. Box 8784 Williamsburg, VA 23187-8784 P: 757-253-6612

jamescitycountyva.gov

April 18, 2014

Mary Ann Freeman, 2891 Hidden Lake Drive, Williamsburg, VA 23185

Re: 110-A Overlook Drive Kingspoint Dam

Dear Ms. Freeman:

This letter is in response to your request for James City County ("County") to review a 103 page report dated March 12, 2014 prepared by Stantec Consulting Services, Inc., formerly Williamsburg Environmental Group, Inc., assessing the viability and current condition of the Kingspoint dam. Specifically, the report focused on repair and upgrade of the dam and the subsequent suitability of the dam to support a driveway to property located at 110-A Overlook Drive. It is my understanding that your lender has requested confirmation from the County that the repairs and upgrades outlined in the report would be satisfactory to the County to demonstrate that the dam can sustain a driveway to access the parcel at 110-A Overlook Drive you wish to purchase.

The County's Engineering and Resource Protection Division has reviewed the Stantec report and its recommendations for the repair and upgrade of the dam. Based on the representations and certifications made in the Stantec report, the County concurs with the report's assessment that the dam, if repaired and upgraded generally as suggested, could support a private driveway to access the parcel. The exact details would need to be determined as part of a County approved site development plan.

This letter does not create a vested right in development of the parcel and any future development of the parcel will be subject to County approval of a site plan and issuance of any necessary permits such as: erosion & sediment control, land disturbing, Chesapeake Bay exception and Virginia Stormwater Management Program (VSMP). The Stantec report identifies Kingspoint dam as a regulated dam which will also require registration with the Virginia Department of Conservation & Recreation. The installation of utilities would be subject to the review of the James City Service Authority.

Mary Ann Freeman April 18, 2014 Page 2

As you are aware, the County continues to retain an ownership interest in a 50-foot-wide rightof-way extending over a portion of the dam. The adjacent property owners have a right, acquired by deed, to use this right of way. The process by which you could acquire the County's right-ofway is outside the scope of this correspondence but the County would be pleased to discuss these issues with you at such time as your purchase of the property is complete.

Sincerely,

M. Q. Pre

M. Douglas Powell Acting County Administrator

cc: Susan Bradford Tarley, Esquire (*via email*) Scott Thomas, Director, Engineering & Resource Protection (*via email*)

County Administration 101-C Mounts Bay Road P.O. Box 8784 Williamsburg, VA 23187-8784 P: 757-253-6728

jamescitycountyva.gov

January 14, 2014

Mr. Jon E. May Managing Broker CSP, CMP Greg Garrett Realty 3705 Strawberry Plains Road Williamsburg VA 23188

Dear Mr. May:

RE: Kingspoint Dam - Property at 110-A Overlook Drive

James City County (the "County") is the putative owner by plat of a portion of the Kingspoint Dam located adjacent to the property of your clients, Dr. and Mrs. Hoay T. Tan, at 110-A Overlook Drive in Kingspoint, consisting of approximately 10.029 acres further identified as James City County Real Estate Tax Map No. 4910100006 (the "Property"). I understand that it is necessary for the County to provide authorization to allow access to the dam for the purpose of conducting studies and evaluations.

On behalf of the County, I hereby grant the owners, their designated agents and representatives, and any contract purchasers of the Property access to the County's portion of the Kingspoint Dam to perform studies and site inspections in order to evaluate the condition of the dam. The County grants this access for a period of three months from the date of this letter. Any tests, studies, evaluations, and assessments conducted by you, your agents, or contract purchasers shall be at your own risk and expense. The access is granted with the understanding that you will share the results of the study with the County and that you will restore the dam property to its prior condition to the extent of any changes as a result of the studies.

If you have any questions, please call.

Sincerely,

M. On Pall

M. Douglas Powell Acting County Administrator

May.ltr MDP/eey

Stantec Consulting Services Inc. 5209 Center Street Williamsburg VA 23188 Tel: (757) 220-6869 Fax: (757) 229-4507

March 12, 2014

Ms. Mary Ann Freeman 1490 Quarterpath Road, Ste 5-196 Williamsburg, VA 23185

RE: Kingspoint Pond Dam – Letter Report

Williamsburg Environmental Group, Inc. (WEG), now Stantec, was retained by you to evaluate the condition of Kingspoint Dam, located in James City County, Virginia. Kingspoint Pond Dam is located in part on 110A Overlook Drive, a property that you consider to purchase. The other part of the dam embankment is located on a James City County undeveloped right-of-way. Your primary interests concern the estimated costs for the rehabilitation of the dam, the suitability of the dam to support a driveway or access road to the property, and the potential impact of a mandate by James City County that water and sewer will be provided from Overlook Drive, potentially by way of the dam embankment.

The author met with you for an initial site visit on December 19, 2013. At this occasion a first impression was shared with you, including needed repairs and maintenance, and the steps needed to bring the subject dam in compliance with the *Virginia Impounding Structure Regulations* (Regulations). It was further discussed that the dam embankment should be investigated by a geotechnical engineer to determine whether there are additional issues with the dam, and that a cost estimate should be obtained from a contractor experienced with dam repairs. Based on this discussion and initial site visit, you contacted with us to provide and coordinate such services.

Based on an appraisal for the property prepared in 2012, the pond was built in the early 1970s as a subdivision amenity and stormwater retention pond. Maintenance apparently was sporadic and the embankment became overgrown with vegetation. The impoundment suffered partial failure during Hurricane Floyd in 1999. It appears that pipe separation in the downstream portion of the outfall barrel led to partial slope failure. In addition, storm events toppled some of the trees that have grown on the dam embankment, leading to some erosion. It appears that the trees have been removed in recent years, however, large stumps remain, and the downstream face of the embankment is covered with wood chips.

Geotechnical Evaluation

Stantec contracted with Blue Ridge Geotechnical, LLC (BRG) for the geotechnical evaluation of the dam embankment. Under BRGs direction, a driller performed two (2) standard penetration test borings on February 4, 2014. Soil samples taken from these were submitted for laboratory testing. On February 14, 2014, BRG provided a draft *Report of Geotechnical Exploration – Kingspoint Dam*, summarizing the results of their investigation (a copy of the report is enclosed). The section dealing with the cause of failure states the following:

It is difficult to determine whether the leak in the CMP caused the failure of the downstream slope of the dam, or whether the failure resulted in the pipe becoming severed. Additionally, it is not known what impact, if any, that overtopping may have played in the failure. It seems likely that the pipe began to leak at some point, which ultimately resulted in the failure of the dam.

When a buried pipe leaks, it will saturate the soil, which can significantly reduce the shear strength of the soil. Additionally, the soil that surrounds the pipe can progressively enter the pipe, which can create loss of ground, eventually resulting in a large-scale failure.

Based on the overall observations made at the dam embankment, including the fact that no piping is evidenced in the failure zone, it appears likely that piping from the barrel is the primary cause for the failure. However, as the dam embankment is not equipped with an auxiliary/emergency spillway, it cannot be excluded that overtopping occurred and contributed to the failure. A number of significant storm events have occurred since Hurricane Floyd that could have resulted in overtopping of the dam, including Gaston in 2003 and Isabel in 2011. A hydrologic and hydraulic analysis of the watershed, pond, and outlet structure would be needed to evaluate the potential contribution of overtopping to the failure.

The geotechnical engineer provides the following recommendations:

Although the failed zone of the dam is large and a significant portion of the dam has been removed, no apparent seepage was noted in the shear face of the scarp. This seems to indicate that the dam is still able to function in spite of the failure. Based on our borings, the material with which the dam was constructed (at least in the center of the dam) appears to be predominantly clay. Clay has a low permeability, which is good for controlling seepage. The following corrective measures are recommended:

- 1. Evaluate the condition of the primary spillway, the riser pipe and the CMP barrel. This can be accomplished with video camera that can be fed both from the top, extending down the riser pipe, and up the CMP barrel from the severed portion. For best results, this work will likely have to be performed when the pond level is low, so that water is not flowing within the pipe. The camera can be used to determine if the pipe is corroded, severed at any joints, or otherwise compromised. One sign of a potential future problem might be if there is an area where soil appears to be entering the pipe.
- 2. Once it is confirmed that the portions of the riser and barrel that remain in the dam are sound, the failed material at the toe of the dam can be removed. As this area is currently being inundated with water exiting the barrel, this work should be performed when the pond level is below the primary spillway. Alternatively, the water should be collected at the current discharge point and piped downstream, until the water can be conveyed within a new extended barrel.
- 3. Soft, weak soil that is currently present at the base of the failed area should be carefully removed, and the subgrade evaluated. A limited portion of the soft material can probably remain; however, this must be determined in the field. If some soft soils must remain, it may be necessary to utilize a bridge lift of large stone (e.g., VDOT No. 2 stone). It is imperative that this material be completely wrapped in geosynthetic fabric for separation. It will also be important that this excavation not undermine the existing dam in any way.
- 4. Extend the barrel and construct a proper outfall. The lower half of the barrel should be supported on a cradle of concrete or flowable fill, as it is not possible to compact around the lower portion of the pipe.
- 5. Replace the failed portion of the dam using compacted soil fill.

The geotechnical engineer indicates that the dam appears capable of supporting a proposed driveway. Recommendations are given in the report that prior to construction of the driveway the wood chips should be removed and the subgrade thoroughly proof-rolled with a fully loaded tandem-axel dump truck to identify any soft or weak areas. Such areas should be improved based on field conditions, under consultation of a geotechnical engineer.

It is understood that the placement of water and sewer lines is considered across the dam. In order to redcued the risk that the dam will be harmed by localized inundation, it is imperative that measures be taken to keep these lines from leaking or rupturing during their service life, especially at the joints. Alternative routes for these utility connections should be explored.

Dam Safety Technical Inspection

Regardless of whether an impounding structure is subject to the Regulations or not, completing a *Dam Safety Technical Inspection* will yield significant information about the status of an impounding structure, and provide guidelines for the repair and/or maintenance recommended. While to our knowledge Kingspoint Pond Dam has not been certified in the past, preliminary calculations indicate that the impoundment is subject to the Regulations.

Stantec conducted a *Dam Safety Technical Inspection* on February 25, 2014. During the inspection the Department of Conservation and Recreation (DCR) *Annual Inspection Report for Virginia Regulated Impounding Structures* as well as our own inspection form was completed, and pictures taken for documentation. Copies of the forms and the photo documentation are enclosed.

The most significant issue for this impounding structure is the pipe separation of the outfall barrel, which apparently led to slope failure on the downstream face. While there is no indication that seepage through the dam embankment occurs, the flows from the dislodged pipe can cause further erosion at the bottom of the slope failure, which in turn can further the slope failure. In the extreme, embankment failure should be expected in the future if the dam is not repaired.

While large trees have been removed from the dam embankment in recent years, some of the large stumps remain. These stumps and roots with a diameter exceeding one (1) inch should be removed, and the face of the dam re-graded and seeded. Further, the trees apparently have been chipped in place and the wood chips applied on the downstream face of the dam. While these wood chips act as mulch and suppress most of the herbaceous growth, they make it impossible to inspect the downstream face of the dam for rutting, animal burrow, etc. The layer of wood chips also masks the face of the dam to an extent that makes it impossible to observe deformations or slumping. It is recommended that the wood chips be removed and a healthy stand of grass established.

The upstream face of the dam embankment is covered with remnants of herbaceous vegetation to a degree that makes it impossible to inspect the dam properly. This vegetation should be removed and the embankment re-seeded, with soil amendments determined by soils tests, so that a healthy stand of grass can be established. The grass should be mowed at least twice per growing season to prevent the re-establishment of woody vegetation.

In keeping with the general lack of maintenance of this impoundment, debris, including tree trunks and branches, has accumulated along the shoreline and to a smaller degree at the inlet to the principal spillway.

Such debris accumulation will reduce the capacity and reliability of the spillway. In the extreme the debris can clog the spillway to a degree that will block the spillway and raise the water level in the reservoir. Such debris should be removed on a regular basis.

Based on our preliminary assessment, this impounding structure is subject to the Regulations, and either an Operation & Maintenance (O&M) Certificate or a General Permit needs to be obtained to operate the impounding structure. Aside from the recommended repair and maintenance, a dam break inundation zone study will need to be prepared for this dam. As it appears that this dam likely is a low hazard dam, a simplified dam break inundation study can be commissioned through the DCR at a cost of \$2,000. The results of this simplified study can then be used to prepare an *Emergency Preparedness Plan*, provided the low hazard classification can be confirmed. With the repairs and maintenance completed, and the referenced materials developed, the prerequisites are met to obtain an O&M Certificate or a General Permit.

Contractor Estimate

Once the draft geotechnical report was available we contacted Bander Smith, LLC, a Richmond based contractor that is specialized in dam and spillway rehabilitation work, for a budget level cost estimate for the needed repair work on the spillway and dam embankment. We provided the geotechnical report and photo documentation for an off-site budget estimate.

The contractor proposes, similarly to the recommendations made by the geotechnical engineer, that an inspection of the outfall barrel and the riser structure be conducted to review the condition of the spillway and it's suitability for the proposed repair method. Bander Smith, LLC, proposes to conduct such an inspection for a fixed fee of \$2,200.

Bander Smith provides a budget level cost estimate for the repair of the spillway and the dam embankment with a cost range of \$85,000 - \$100,000, excluding permitting as needed. The repair will result in a fully functioning primary spillway system, and consists of the following steps:

- Mobilization, Erosion and Sediment Control Measures, Water Control/Diversion
- Existing Structure Removal (separated barrel only) and Embankment Preparation
- Slip line of the remaining corrugated metal pipe
- Re-construction of the Embankment, including removal of tree stumps
- Demobilization, Clean-up

The contractor has indicated that the cost range provided contains some contingency adjustments, and that once site access and conditions of the pipe are assessed, a firm proposal can be provided that likely will tend towards the lower end of the cost range shown. A copy of the contractor estimate is enclosed.

Additional Considerations

The appraisal indicates that "15 other lots abut the pond, and at least 11 lots appear to have some Fee ownership of a portion of the pond." The pond obviously serves as an amenity for the adjacent properties, but it also serves as a stormwater management facility for the sub-division.

According to the appraisal, it appears that there have been efforts to repair the dam, whereas "a special taxing district was contemplated for the pond owners, which would result in shared cost and spreading

those costs over a defined period of years." Based on the appraisal, "unilateral repair of the dam, given pond and dam ownership issues as well as the pond's value as a storm water retention basin, is not considered reasonable and fair."

The overall situation appears to be somewhat complex, with no clear path how cost sharing can be achieved among interested parties. We suggest that an in-depth discussion with County representatives would be valuable, with the goal to:

- 1. Gain an understanding of what considerations have been made regarding repair and cost sharing, and
- 2. To explore alternative approaches in light of recent regulatory developments.

Of specific interest is, whether the County may be willing to support the repair of the impoundment in combination with a retrofit of the spillway that would allow for water quality credits towards the County's pollution reduction requirements for the Chesapeake Bay TMDL or for the County's Municipal Separate Storm Sewer System (MS4) permit. Stantec will gladly assist you with such discussions with the County.

It also should be noted that a singular access to a property, especially across a dam embankment or a bridge, always entails a certain risk of failure, thus making the property at least temporarily inaccessible. We believe it would be prudent to incorporate a secondary ingress/egress route, maybe from the north, that can be used in case of an emergency.

Stantec appreciates the opportunity to working with you on this project. In case of questions or for discussion, please contact us at 757-220-6869, or via email at <u>chris.kuhn@stantec.com</u>.

Best regards,

Stantec Consulting Services Inc.

the he

Chris Kuhn

Enclosure

Cc: Jeffrey T. Hancock, P.E., Stantec

Stantec Consulting Services Inc.

5209 Center Street Williamsburg VA 23188 Tel: (757) 220-6869 Fax: (757) 229-4507

Kingspoint Pond Dam – Photo Documentation

View along top of dam, from right abutment.

View along upstream face of dam, from right abutment.

Brick principal spillway with four (4) control orifices.

Moss and bare spots on embankment.

Tree stump that should be removed.

Downstream part of separated outfall barrel, corrugated metal pipe (CMP).

Displaced junction box within outfall barrel.

View of downstream face of embankment, covered with wood chips from tree removal.

View of downstream portion of displaced outfall barrel, from downstream end towards slope failure area.

Overview of displaced outfall barrel and slope failure area.

Slope failure area.

Displaced junction box.

Downstream penetration of remaining outfall barrel, with displaced portion of barrel and junction box.

Outfall barrel, pipe separation area.

View of failure area.

Overview of failure area.

Downstream face of embankment.

Wood chip cover and remaining tree stump.

Groin swale on left abutment, downstream face.

View along top of embankment, from left abutment.

View along upstream face of embankment, from left abutment.

Herbaceous vegetation on upstream face of abutment.

Pipe separation area.

Design with community in mind

Stantec Consulting Services Inc. 5209 Center Street Williamsburg VA 23188 Tel: (757) 220-6869 Fax: (757) 229-4507

Dam Inspection and Maintenance Inspection Checklist

Name of Facility:	Kingspoint Pond Dam	Project #:	203451640
Date of Inspection:	February 25, 2014	Inspected by:	Chris Kuhn
Embankment			

Yes	No	
	\boxtimes	Are there any surface cracks?
\boxtimes		Is there any unusual movement or cracking at or beyond the toe? Slope failure
	\boxtimes	Is there erosion on upstream face from wave action or changes in pool level?
\boxtimes		Is there erosion from runoff, either gullies or bare areas? Downstream toe area?
\square		Is there erosion from traffic (people, animals, vehicles)?
N/A		Are there animal burrows? Not observable due to herbaceous vegetation on US face
		and wood chips on DS face.
	\boxtimes	Are there depressed areas on the dam?
	\square	Is there any evidence of piping? (Piping is evidenced by muddy flow through the
		dam and/or the formation of soil deposits beyond the dam and depressions on its
		slopes)
	\boxtimes	Does the crest appear to have shifted or settled excessively? (Look for cracks in the
		embankment and associated structures. Compare alignment with plans if they are
		available).
N/A		If the upstream face is protected by riprap, is it in good condition? (Riprap is a
		layer, facing, or protective mound of stone in random size pieces, randomly placed
		to prevent erosion, scour, or sloughing of an embankment or structure).
N/A		If there is riprap in discharge channels or in the stilling basin downstream, is it in
		good condition?
N/A		If drainage channels at ends of embankments are protected by riprap, is it in good
		condition?
N/A		If there is riprap in miscellaneous areas (on downstream slope, on crest, etc.) is it
		in good repair?
N/A		If there are any drains to collect and remove seepage, are they operating properly?
N/A		If there are foundation drains outlets, are they clear and flowing?
\boxtimes		Are there wet spots or areas on the downstream face, at the toe, or beyond the
		dam? (Such spots are often indicated by a change in color or type of vegetation,
	<u> </u>	such as from grass to cattails.) Some wet spots, likely due to runoff
	\boxtimes	Are there seeps or springs with flowing water? Attention should be paid to the
		transition areas from embankment to abutments, around any penetrations passing
		through the embankment, on downstream tact, at the toe of the dam and beyond,
		at the base of trees on/near/below the dam.
\bowtie		Is there swamp or marsh type vegetation present on the downstream face or
		beyond the toe (cattails, tall grass, etc.)? Downstream area is floodplain of James
	\square	KIVEr
	M	is the dam overgrown with trees and/or underdrusn? Stumps, herbaceous
clinic7	258	vegetation, wood chips on DS face.
unite/	~JO	

- Has the dam ever been overtopped? Unknown, but unlikely. No signs of overtopping observed in the field.
 Have there been any modifications to the embankment, such as raising the second se
 - Have there been any modifications to the embankment, such as raising the crest, changing the shape or size of the principal spillway, or changing the shape or size of the embankment?

Principal Spillway

Yes	No	
	\boxtimes	Can water flow into the principal spillway unobstructed, as designed? Some debris accumulation at principal inlet.
	\boxtimes	Is outlet pipe or discharge channel clear and open to allow for free passage of the principal spillway discharge? Pipe separation with associated slope failure. Dislodged pipe and soil divert flow.
	\boxtimes	Is the primary spillway structure in good condition (check concrete, wood, and metal portions for damage or deterioration)? Outfall pipe failure with slope failure
N/A		Does the lake have a low level drain to lower the water level in emergencies or for maintenance? None observed
N/A		If low level drain present, is it known to be in working condition? Note: Care should be taken when operating a low level drain that has not been operated for a long time. It may be impossible to close it once opened
N/A		If there are additional valves, operating equipment, or appurtenances, are they in working condition?

Auxiliary/Emergency Spillway No Auxiliary/Emergency Spillway

Yes No

- N/A Are the approach and the control section of the emergency spillway without obstruction, as designed and constructed?
 N/A Is the discharge channel clear and without obstruction, allowing free flow of emergency spillway discharge?
- N/A Is the emergency spillway constructed in a way that flow through it will not expose other portions of the dam to erosion?
- N/A Is the emergency spillway in good working condition overall? (Check for erosion within channel, adequacy of grass cover, integrity of concrete structures, etc.)

Reservoir Area

Yes	No	
	\boxtimes	Does nature and land use of the surrounding area present any problems for the
		impoundment?
	\boxtimes	Is there evidence of landslides or instabilities along the shoreline?
	\boxtimes	Is serious wave erosion occurring along the shoreline?
	\boxtimes	Are significant amounts of sediment entering the impoundment, currently or in the
		past?

Watershed

<u>Yes No</u>

Have there been any major modifications or significant changes in the watershed, such as urban development (commercial, residential), clear-cutting of woodlands, or other changes in landuse?

Downstream Channel

Yes No ⊠ □

Is the downstream channel free of obstructions? Past the toe of the embankment

Downstream Area

Yes	No	
	\boxtimes	In case of dam failure, is loss of life or significant economic loss likely?
	\boxtimes	Are current telephone numbers of persons living or working in the areas
		downstream of the dam, as well as telephone numbers of those responsible for
		facilities that would be affected (highways, public utilities) on file?
	\boxtimes	Are current telephone numbers of local authorities who will need to be informed if
		the dam is imperiled (sheriff, county administrator, emergency services
		coordinator) on file?
	\boxtimes	Is the Emergency Action Plan up-to-date and have drills been performed?

Notes:

To our knowledge this dam is not currently certified, and no Emergency Preparedness Plan has been prepared.

The most significant issue for this dam is the pipe separation of the outfall barrel, which apparently led to slope failure on the downstream face. While there is no indication that seepage through the dam embankment occurs, the flows from the dislodged pipe can cause further erosion at the bottom of the slope failure, which in turn can further the slope failure. In the extreme, embankment failure should be expected in the future if the dam is not repaired.

While large trees have been removed from the dam embankment in recent years, at least some of the large stumps remain. These stumps and roots with a diameter exceeding 1 inch should be removed, the face of the dam re-graded and seeded. Further, the trees apparently have been chipped in place and the wood chips applied on the downstream face of the dam. While these wood chips act as mulch and suppress most of the herbaceous growth, they make it impossible to inspect the downstream face of the dam for rutting, animal burrow, etc. The layer of wood chips also masks the face of the dam to an extent that makes it impossible to observe deformations or slumping. It is recommended that the wood chips be removed and a healthy stand of grass established.

The upstream face of the dam embankment is covered with remnants of herbaceous vegetation to a degree that makes it impossible to inspect the dam properly. This vegetation should be removed and the embankment re-seeded, with soil amendments determined by soils tests, so that a healthy stand of grass can be established. The grass should be mowed at least twice per growing season to prevent the re-establishment of woody vegetation.

In keeping with the general lack of maintenance of this impoundment, debris, including tree trunks and branches, has accumulated along the shoreline and to a smaller degree at the inlet to the principal spillway. Such debris accumulation will reduce the capacity and reliability of the spillway. In the extreme the debris can clog the spillway to a degree that will block the spillway and raise the water level in the reservoir. Such debris should be removed on a regular basis.

ANNUAL INSPECTION REPORT FOR VIRGINIA REGULATED IMPOUNDING STRUCTURES

Reference: Impounding Structures Regulations, 4VAC 50-20-10 et seq., including 4VAC 50-20-105, Virginia Soil and Water Conservation Board

Owner's Information							
Name of Dam:	Kingspoint Pond Dam	Inventory Number:	N/A				
Owner's Name:	Dr. Hoay T. Tan, Trustee	Location-County/City:	James City County				
Contact Person (if	Mr. A. John Tan						
different from above):	415N 2 nd Street Unit 244 Sep Jose CA 05112	- Hozard Classification					
Name of reservoir:	415N 2 Street, Ollit 244, Sall Jose, CA 95112 Kingspoint Pond						
Purpose of reservoir:	Amonity Stormwater Management	_					
Telephone No ·	(Residential)	(Business)					
Other means of commun	nication:						
Owner's Engineer Name of Engineering Fi Professional Engineer V Mailing Address:	irm and Engineer: Stantec, Jeffrey T. Hancock /irginia License Number: 37017 5209 Center Street, Williamsburg, VA 23188	k, P.E.					
Telephone No.: (Business) 757-220-6869						
Directions: Make note	of all pertinent conditions and changes since the last i	nspection, or, if this is the	first inspection, since				
the filing of a design re	eport.	Data of This Inspection	Eab 25 2014				
		Date of Last Inspection	<u>reb. 25, 2014</u> unknown				
		Date of Last Inspection	ulikilowii				
1. EMBANKMENT							
a. Any alteration m	ade to the embankment? No						
,							
b. Erosion on emba	ankment? Slope failure associated with pipe separation	on of principal spillway, D	S face of dam				
0							
c. Settlement, misa	lignment or cracks in embankment? No						
d. Seepage? If so,	seepage flow rate and location (describe any turbidity and	l observed color within the	flow): No				
1 0 /			,				
2. UPSTREAM SLOPE a. Woody vegetation discovered? b. Rodent burrows discovered? c. Remedial work performed? Tree removal in recent years							
 3. INTAKE STRUCT a. Deterioration of the structure b. Exposure of rebacconductories c. Is there a need to the structure d. Any problems we we was the drawdow 	URE No concrete? No ar reinforcement? No o repair or replace the trash rack? No trash rack. o ith debris? Some debris accumulation wn valve operated? No valve present						

4. ABUTMENT CONTACTS

a. Any seepage? If so, estimate the flow rate and describe the location of the seep or damp areas (describe any turbidity and observed color within the flow):

No seepage observed. Right US groin has concrete ditch installed for some road drainage.

Evidence of runoff in left DS groin, with light erosion. Right DS groin is in failure area

5. EARTHEN EMERGENCY SPILLWAY Not present

a. Obstructions to flow? If so, describe plans to correct:

- b. Rodent burrows discovered?
- c. Any deterioration in the approach or discharge channel?

6. CONCRETE EMERGENCY SPILLWAY Not present

- a. Deterioration of concrete?
- b. Exposed steel reinforcement?
- c. Any leakage below concrete spillway?
- d. Obstructions to flow? If so, lists plans to correct:

7. DOWNSTREAM SLOPE Slope failure associated with failure of outfall barrel due to pipe separation

- a. Woody vegetation discovered? Some large remaining stumps. Wood chips cover the whole face
- b. Rodent burrows discovered? Not o
 - covered? Not observable due to layer of wood chips
- c. Are seepage drains flowing? No drains present
- d. Any seepage or wet areas? No seepage or wet areas on embankment. Failure area shows no sign of seepage

8. OUTLET PIPE Pipe Separation

a. Any water flowing outside of discharge pipe through the Impounding Structure?

b. Describe any deflection or damage to the pipe:

Pipe separation approx. half way through DS slope

9. STILLING BASIN Not present

- a. Deterioration of concrete structures?
- b. Exposure of rebar reinforcement?
- c. Deterioration of the basin slopes?
- d. Repairs made?
- e. Any obstruction to flow?

10. GATES Not present

- a. Gate malfunctions or repairs?
- b. Corrosion or damage?
- c. Were any gates operated? If so, how often and to what extreme?

11. RESERVOIR/WATERSHED

- a. New developments upstream of dam? No
- b. Slides or erosion of lake banks around the rim? No
- c. General comments to include silt, algae or other influence factors: Woody debris accumulation along shoreline and at the principal outlet structure. Algae

12. INSTRUMENTS Not present	
a. List all instruments	
b. Any readings of instruments?	
c. Any instantion of new instruments?	
13. DOWNSTREAM/HAZARD ISSUES	No
a. New development in downstream mundation zone?	140
b. Note the maximum storm water discharge or peak elevation during	g the previous year. Unknown
c. Was general maintenance performed on dam? If so, when?Tre	e removal in recent years
d. List actions that need to be accomplished before the next inspectio	n: Repair of the pipe separation and slope failure
Removal of the stumps and roots with diameter larger than	1 inch. Removal of herbaceous vegetation. Re-grading
of the dam faces, re-seeding and soil amendments based on	testing. Debris removal along shoreline and at inlet
structure.	
14. OVERALL EVAULATION OF IMPOUNDING STRUCTURE A (Check one) EXCELLENT GOOD	ND APPURTENANCES
General Comments: <u>The impounding structure is not well maintained</u> and associated slope failure. Without repair the impounding structure	b. Obviously the most significant issue is the pipe separation is at risk for breach in the future.
Recommendations: Tree stumps and roots as well as the layer of wo	od chips need to be removed and a healthy stand of grass
established, which is mowed at least twice a growing season.	
Debris should be removed from the shoreline and around the outlet stru-	ucture.
Efforts should be undertaken to obtain an Operation & Maintenance C	ertificate or a General Permit for the operation of this
Impoundment. Preliminary calculations demonstrate that the impound	ment is subject to the Dam Safety Regulations.

CERTIFICATION BY OWNER'S ENGINEER (required only when an inspection by an engineer is required)

I hereby certify that the information provided in this report has been examined by me and found to be true and correct in my professional judgment.

Signed:		Virginia Number:
	Professional Engineer's Signature Print Name	e
This	day of , 20	
	Engineer's Virginia Seal:	

CERTIFICATION BY OWNER

I hereby certify that the information provided in this report has been examined by me.

Signed:				
	Owner's Signature			Print Name
This	day of	, 20	 	

Mail the executed form to the appropriate Department of Conservation and Recreation Division of Dam Safety and Floodplain Management Regional Engineer

REPORT OF GEOTECHNICAL EXPLORATION

KINGSPOINT DAM

JAMES CITY COUNTY, VIRGINIA

Prepared for:

STANTEC/WILLIAMSBURG ENVIRONMENTAL GROUP

WILLIAMSBURG, VIRGINIA

Prepared by:

BLUE RIDGE GEOTECHNICAL, LLC

RICHMOND, VIRGINIA

BRG PROJECT NO. 150 REVISED MARCH 10, 2014

INTRODUCTION AND AUTHORIZATION

Blue Ridge Geotechnical, LLC (BRG) is pleased to submit this report of the geotechnical exploration program performed for the Kingspoint Dam in James City County, Virginia. This work was performed in general accordance with the proposal submitted to Stantec/Williamsburg Environmental Group (WEG) on January 21, 2014 and accepted on January 22, 2014.

PURPOSES AND SCOPE OF SERVICES

The purposes of our involvement on this project were to execute a subsurface exploration program, to evaluate the subsurface conditions at the site, and to prepare this report, which contains our geotechnical recommendations. The tasks that **BRG** performed are summarized below.

- A. Reviewed the available geologic literature and soils maps of the area.
- B. Performed two site visits (January 27, 2014 and February 4, 2014).
- C. Performed two (2) Standard Penetration Test (SPT) borings and two (2) shallow hand auger borings.
- D. Performed laboratory testing on selected soil samples.
- E. Estimated the engineering properties of the subsurface materials within the depths explored.
- F. Performed analyses in order to develop geotechnical recommendations regarding the existing dam based on the estimated soil parameters and our understanding of the project.
- G. Prepared this report presenting our findings and recommendations.

Our scope of services did not include subsequent site visits, construction observation work, attendance at meetings, or any other task not explicitly identified herein or in our proposal.

PROJECT INFORMATION AND CURRENT SITE CONDITIONS

Kingspoint Dam is located within the Kingspoint subdivision in James City County, Virginia as shown on the Project Location Map (Drawing No. 1) in Appendix "A." The dam is located

northeast of 110 Overlook Drive and is generally located on the south side of the pond. From the downstream toe, the dam appears to have a maximum height of approximately 25 to 30 feet at its center and is approximately 300 feet in length. The crest (top) of the dam is approximately 20 to 25 feet wide. The dam appears to have been constructed across a natural swale; steep natural slopes were observed on both sides of the ravine. Large trees were once present on the dam, but have recently been removed (cut even with the surface of the dam). Several large stumps were observed in the dam. The crest and downstream surface of the dam is covered with what appears to be mulch or chipped wood, which is likely the remnants of the trees. The age of the dam is unknown. Additionally, it is not known if the dam was constructed of zoned material (separate core and shell zones, each consisting of different material), or whether the dam is made of a relatively homogeneous material.

The primary spillway consists of a brick riser structure that is capped with concrete located on the right side of the pond, adjacent to the dam. (Note that the terms "right" and "left" are relative to one viewing the dam in a downstream direction. In this case, the right and left sides are the southwest and northeast sides, respectively.) The downstream slope of the dam ranges between 24° and 26°, and the upstream slope (above the pond water level) ranges from 22° to 23°. The pond water level appeared to be approximately 6 to 7 feet below the crest of the dam at the time the drilling was performed, and pond water was entering the primary spillway. A portion of the top of the spillway structure appeared to be clogged with debris.

Mature trees are present in the flat area approximately 25 feet beyond the downstream toe of the dam, and the ground in this area was saturated at the time of our site visit. Rain had fallen the day prior to drilling; however, this area may remain marshy during the wet time of the year.

A large failure zone is present on the right, downstream portion of the dam. This failure is directly over the primary spillway barrel pipe. The barrel pipe, which is made of corrugated metal, is completely severed at the bottom of the failed zone. Water is flowing through the portion of pipe that extends out of the dam. The face of the failed zone (scarp) appears to be nearly vertical, and extends up to the downstream edge of the dam's crest. No seepage was observed in the vertical face of the failed zone.

GEOLOGIC CONDITIONS

According to the geologic references cited, the site is located within the Coastal Plain Physiographic Province. The site appears to be located within the Chesapeake Group (Tc), which is comprised of several formations. The material within this group can consist of fine to coarse sand, silt, clay, variably shelly and diatomaceous.

2003 Digital Representation of the 1993 Geologic Map of Virginia, Commonwealth of Virginia, Department of Mines, Minerals and Energy, Division of Mineral Resources

FIELD EXPLORATION PROGRAM

On January 27, 2014, two (2) hand auger borings (HA-1 and HA-2) were performed at the toe of the dam. On February 4, 2014, two (2) Standard Penetration Test (SPT) borings were performed on the crest of the dam. The boring locations are shown on the Approximate Boring Location Plan (Drawing No. 2) in Appendix "A." The borings (designated B-1 and B-2) were advanced to a depth of 40 feet below the crest of the dam. The locations of the borings were recorded in the field using a hand-held GPS unit.

The borings were performed by Ayers and Ayers, Inc. of Powhatan, Virginia and were advanced using a CME 45B drill rig mounted on an all-terrain vehicle. Hollow-stem augers having an inside diameter of 2¼ inches were used. The SPT, as defined by ASTM D 1586, involves drilling to predetermined depths using hollow-stem augers, removing the center plug, and driving a split-spoon sampler with a 140-pound hammer falling 30 inches through the hollow-stem augers. The blow counts required to drive the split-spoon sampler are recorded for three successive, 6-inch increments. The last two, 6-inch increments are added together, and this value is referred to as the N-value for that particular sample. The N-value can be used to estimate the relative density of the soil (for granular soils), or the consistency (for fine-grained soils), and can be used to estimate geotechnical engineering properties. A manual hammer was used during the SPT work. Upon completion, all borings were filled and sealed with a grout consisting of a mixture of extra high yield bentonite and cement.

HAND AUGER RESULTS

Hand Auger Location	Material Encountered	Groundwater Depth	Termination Depth	Reason for
HA-1 37.24095° -76.70018°	0-2': Very moist, brown, lean CLAY with sand, large stick at 2' 2'-3.4': Very moist, dark gray, silty fine to medium SAND	2.6'	3.4'	Refusal
HA-2 37.24102° -76.70008°	0-2.75': Moist to very moist, red brown to yellow brown lean CLAY with sand	2.5'	2.75'	Below water table

The results of the hand auger borings are summarized in the table below:

USDA SOIL MAP

The USDA Soil Map of this area was reviewed. A copy of this map is provided in Appendix C (Drawing No. 3). The predominant soil unit indicated was **Unit 15F** (Emporia complex, 25% to 50% slopes). The parent material is indicated to be marine deposits. Appendix C contains additional information obtained from the USDA website.

LABORATORY TESTING PROGRAM

The soil samples obtained during drilling operations were visually classified in general accordance with ASTM D 2487 (Standard Test Method for Classification of Soils for Engineering Purposes) and ASTM D 2488 (Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)). This system is also known as the Unified Soil Classification System (USCS) and was used to develop the soil descriptions presented on the logs. The logs and supplemental information regarding the USCS procedure are provided in Appendix "B."

Selected soil samples were sent to GeoTesting Express in Acton, Massachusetts for laboratory testing. Water Content determinations (ASTM D 2216), Atterberg Limits (ASTM D 4318), and Grain-size Analyses (ASTM D 422) were performed. Detailed laboratory results are included in Appendix "D" of this report and summarized below.

Location	Depth (ft.)	Water Content (%)	Liquid Limit (%)	Plasticity Index (%)	Fines Content (%)	USCS
B-1	2.0-3.5	16.2	49	28	70.6	CL
B-1	9.0-10.5	22.0	37	18	75.0	CL
B-1	14.0-15.5	17.6	25	11	61.7	CL
B-2	7.0-8.5	19.9	32	16	70.3	CL

SUBSURFACE CONDITIONS

Soil Stratigraphy

Three general soil units were encountered during our subsurface exploration program:

Unit "A":	Surficial Materials
Unit "B":	Fill (Dam Embankment)
Unit "C":	Alluvium/Marine Sediments

Unit "A" surficial materials consisted of approximately 1 to 2 inches of mulch (chipped trees). This unit was encountered in all borings locations.

Unit "B" fill soils that make up the dam embankment consist primarily of lean CLAY with sand. Occasional organic matter and wood fragments were encountered in this unit. This unit, which was encountered in borings B-1 and B-2, extends to a depth of approximately 23 feet below the crest of the dam. The Standard Penetration Test N-values ranged from 2 to 17 blows per foot (bpf), with an average value of approximately 8 bpf, which represents a "medium stiff" consistency for the cohesive soils.

Unit "C" alluvial/marine soils were encountered in all borings and consist lean CLAY (CL) with sand and clayey SAND (SC). The N-values in this unit range from 3 to 12 with an average of 6.

A detailed description of the soils encountered at each boring is presented on the boring logs provided in Appendix "B." Although the delineations between these units, as well as the delineations between the various soil strata within each unit, are depicted as a solid line on the boring logs, the transition between strata may be gradual or abrupt. BRG will retain the soil samples for 60 days, unless it is requested that they be kept for a longer period of time.

Groundwater/Seepage Line Observations

The groundwater (seepage line) was encountered at the depths/elevations shown in the table below.

	Groundwater Measurements (Depth)												
Boring	During Drilling	Upon completion (through hollow-stem auger)	Upon completion (through uncased borehole)										
B-1	Not observed	Not observed	33 ft.										
B-2	22 ft.*	Not observed	36 ft.										
HA-1	3.4	N/A	N/A										
HA-2	2.75	N/A	N/A										

*possibly perched

Long-term water level (seepage line) measurements using piezometers were not obtained. Unless long-term water measurements are made over a long period of time, it is difficult to know precisely where the water surface (seepage line) is located. The water may not simply be the point at which the soil samples have a "wet" appearance. The actual phreatic surface may be lower than the point at which "wet" soils are encountered. This is due to the presence of a saturated capillary fringe zone above the actual water level, especially common in fine-grained soils. Additionally, the soil augers typically alter the sides of the borehole (smear the sidewalls of the hole), which inhibits groundwater recharge, resulting in possible erroneous readings when taken immediately upon completion of the boring. In some cases, the groundwater that is encountered during drilling is not a static phreatic surface, but rather is under artesian pressure. Alternatively, subsurface water may be "perched" on top of an impervious stratum. Seasonal fluctuations and extended periods of drought or rain can also significantly affect the water levels.

OVERALL CONDITION OF DAM

Based on observations made at the time of our site visits, except for the large failed area, the condition of the dam generally appears satisfactory. No signs of localized slope failure or excessive seepage were noted on the downstream slope face, nor on the portion of the upstream face that is visible above pond level. The ground surface near the toe of the dam and beyond was wet; however, this appears to be the result of recent heavy rain and snowfall. The Standard Penetration Test N-values tended to be lower in boring B-2 than in boring B-1, possibly indicating that the dam may contain localized zones of weaker material. However, the dam appears to have been in place and stable for a relatively long period of time.

The dam appears capable of supporting a proposed driveway that will provide access to the property on the east side of the pond from Overlook Drive. Prior to driveway construction, the wood chips should be removed, and the subgrade thoroughly proofrolled with a fully loaded, tandem-axle dump truck to identify any soft or weak areas. All areas that pump or rut during proofrolling operations should be improved based on field conditions. This driveway appears to be the sole access point for this property, as the pond and the Colonial National Historic Parkway border the property on the west and east sides, respectively. However, if possible, it would be prudent to incorporate a secondary ingress/egress route (possible from the north) that can be used in case of an emergency.

It is recommended that the stumps and large roots present in the dam be removed and replaced with compacted structural fill as described later in this report. Roots larger than approximately one inch in diameter should be removed; however, this work should be performed as carefully as possible. It would be preferable to leave isolated roots in place rather than to damage the dam by attempting to remove roots that extend deep into the embankment. As a guide, excavations performed for the purpose of stump and root removal should be limited to a depth of approximately 3 feet.

CAUSE OF FAILURE

It is difficult to determine whether the leak in the CMP cause the failure of the downstream slope of the dam, or whether the failure resulted in the pipe becoming severed. Additionally, it is not known what impact, if any, that overtopping may have played in the failure. It seems likely that the pipe began to leak at some point, which ultimately resulted the failure of the dam.

When a buried pipe leaks, it will saturate the soil, which can significantly reduce the shear strength of the soil. Additionally, the soil that surrounds the pipe can progressively enter the pipe, which can create loss of ground, eventually resulting in a large-scale failure.

RECOMMENDATIONS

Although the failed zone of the dam is large and a significant portion of the dam has been removed, no apparent seepage was noted in the shear face of the scarp. This seems to indicate that the dam is still able to function in spite of the failure. Based on our borings, the material with which the dam was constructed (at least in the center of the dam) appears to be predominantly clay. Clay has a low permeability, which is good for controlling seepage.

The following corrective measures are recommended:

- 1. Evaluate the condition of the primary spillway, the riser pipe and the CMP barrel. This can be accomplished with video camera that can be fed both from the top, extending down the riser pipe, and up the CMP barrel from the severed portion. For best results, this work will likely have to be performed when the pond level is low, so that water is not flowing within the pipe. The camera can used to determine if the pipe is corroded, severed at any joints, or otherwise compromised. One sign of a potential future problem might be if there is an area where soil appears to be entering the pipe.
- 2. Once it is confirmed that the portions of the riser and barrel that remain in the dam are sound, the failed material at the toe of the dam can be removed. As this area is currently being inundated with water exiting the barrel, this work should be performed when the pond level is below the primary spillway. Alternatively, the water should be collected at the current discharge point and piped downstream, until the water can be conveyed within a new extended barrel.
- 3. Soft, weak soil that is currently present at the base of the failed area should be carefully removed, and the subgrade evaluated. A limited portion of the soft material can probably remain; however, this must be determined in the field. If some soft soils must remain, it may be necessary to utilize a bridge lift of large stone (e.g., VDOT No. 2 stone). It is imperative that this material be completely wrapped in geosynthetic fabric for separation. It will also be important that this excavation not undermine the existing dam in any way.
- 4. Extend the barrel and construct a proper outfall. The lower half of the barrel should be supported on a cradle of concrete or flowable fill, as it is not possible to compact around the lower portion of the pipe.
- 5. Replace the failed portion of the dam using compacted soil fill as described below.

COMPACTED FILL

Compacted fill for the dam should consist of lean CLAY with sand (CL), sandy CLAY (CL/CH), or clayey SAND (SC), providing the fines content is at least 35%. The fill should be free of organics, root matter, debris and all other deleterious material and should be placed in thin horizontal layers having a maximum loose lift thickness of 8 inches. Compacted fill placed in close proximity to the barrel extension should be placed in 4-inch loose lifts and compacted with hand tampers.

The fill should be compacted to a minimum density of 95% of the maximum dry density based on the Standard Proctor compaction test (ASTM D 698). The water content (moisture content) at the time of compaction should be within (-1) percentage point to (+3) percentage points of the optimum water content based on the Standard Proctor. Otherwise, wetting or drying the material may be necessary prior to compaction. Fill should not be placed on ground that is saturated, frozen or snow-covered.

In many cases, a soil cannot be properly compacted due to excessive moisture. If scarification and aeration is not practical, the use of lime or some other admixture can be considered to help facilitate earthwork operations.

It is typically recommended that all fill lifts be benched into existing slopes a minimum of 4 to 6 feet horizontal to help prevent the development of a smooth failure plane between the compacted fill and the existing ground (existing dam embankment). However, this must be weighed against the effect that cutting into the existing dam will have. Using a detailed survey of the failed area, it will be necessary to develop a series of steps into the existing dam that accomplish this goal while also limiting the impact to the dam.

UTILITY CONSTRUCTION

It is understood that the placement of water and sewer lines are being considered across the dam. In order to reduce the risk that the dam will be harmed by localized inundation, it will be imperative that measures be taken to keep these lines from leaking or rupturing during their service life, especially at the joints.

CONSTRUCTION INSPECTION AND SAFETY

It is strongly recommended that a qualified inspector monitor all aspects of earthwork construction, especially fill placement and moisture-density (compaction) testing. A full-time inspector can often help identify earthwork problems so they can be quickly corrected.

It is imperative that all OSHA regulations be followed. This work will be performed at the base of steep slope, and the safety of those working in this area must be maintained. It may be necessary for the contractor to utilize temporary shoring to ensure the safety of the construction crew.

LIMITATIONS

This report has been prepared specifically for Stantec/Williamsburg Environmental Group, or their authorized representatives, for the proposed Kingspoint Dam in James City County, Virginia.

The recommendations contained herein are based on the information obtained during our subsurface exploration program and our understanding of the project. If the details of this project differ from those described herein, or if any details of this project change after the date of this report, we should be contacted. Our recommendations may have to be amended as a result of the project modifications.

It is important to realize that subsurface conditions can vary (sometimes significantly) from those encountered during the subsurface exploration program. If, during construction operations, site conditions appear different than those described herein, we should be contacted. Again, our recommendations may have to be amended as a result of the conditions revealed during construction.

The report should be made available to other designers involved with the project, as well as perspective contractors bidding on the project. However, it should be known that this report is "for information only" and should not be considered part of the Contract Documents. This report was intended to provide recommendations for design only. The recommendations contained herein represent our opinions and interpretations; no other warranty, explicit or implicit, is made.

ACKNOWLEDGEMENT

We appreciate the opportunity to serve as your geotechnical engineering consultant on this project. If you have any questions, please do not hesitate to contact us at 804/357-4157 or BlueRidgeGeotech@comcast.net.

Respectfully Submitted, Blue Ridge Geotechnical, LLC

J. Michael Hall, P.E. Geotechnical Engineer/Founder

REFERENCES

Commonwealth of Virginia, Department of Mines, Minerals and Energy, Division of Mineral Resources, Publication 174, *Digital Representation of the 1993 Geologic Map of Virginia, Expanded Explanation*, 2003

USDA Soil Survey Maps (www.websoilsurvey.nrcs.usda.gov)

Army Corp of Engineers Engineering Manual (EM 1110-2-1901), September 30, 1986

APPENDICES

- Appendix A (Figures)
 Project Location Map (Drawing No. 1)
 Approximate Boring Location Plan (Drawing No. 2)
- Appendix B (Boring Logs) Boring Logs B-1 and B-2 Boring Log Interpretation (2 pages)
- Appendix C (USDA Soil Map Data) USDA Soils Map (Drawing No. 3) Map Unit Description – (15F) Emporia Complex, 25% to 50% slopes Engineering Properties (9 pages) Physical Properties (8 pages) Particle Size and Coarse Fragments (5 pages)
- Appendix D (Laboratory Test Results) (9 pages)

* Map obtained from Virginia.gov website

^{*} Adapted itouchmap.com

Blue Ridge Geotechnical, LLC

12817 Church Road, Richmond, Virginia BlueRidgeGeotech@comcast.net 804/357-4157

STANTEC/WILLIAMSBURG ENVIRONMENTAL GROUP WILLIAMSBURG, VIRGINIA

APPROXIMATE BORING LOCATION PLAN

KINGSPOINT DAM James City County, Virginia BRG No. 150 February 2014 Drawn by: JMH * Scale: As Noted

DRAWING NO. 2

BORING LOGS

Blue Ridge Geotechnical, LLC

Boring Log

B-1 (Sht. 1 of 2)

Project: Kingspoint Dam James City County, Virginia Drilling Contractor: Ayers and Ayers, Inc. Drilling Method/Equip: HSA, 2-1/4" I.D., CME 45B ATV Rig Hammer Type: *Manual* Drill Date: 2/4/14 GS EL.: Unknown Boring Location: N 37.24099° W -76.70048°

BRG Project No.: 150

Client: Stantec

(ft.)	Material	Ş	ple	(ft.)		Blow	s	ne		SPT	N-va	alue (1	opf)		Att	erberg	Limits		
Elev.	Description	nsc	Sam	epth	6''	6"	6"	N-val	ľ	Wate	er Co 20	ontent 4	:	60	••••)	80	10	00	Remarks
	Moist, stiff, red brown, brown	(F)		0.0	6	6	•		t										~2 inches mulch on surface
	sand, trace organic matter (occasional sticks, roots)			1.5 2.0	6		9	15											Water: -Not encountered during drilling
	(Fill)			3.5	7	7	8	15			•		-•	,					-Not encountered upon completion (through HSA) - 33 ft. (through uncased
	Moist, stiff, yellow brown and orange brown, lean CLAY with sand, trace organic matter (occasional sticks, roots)	(F)		5.5	,	6	4	10	_	1									borehole) Cave-in: 37 ft.
	Below 7': Medium stiff consistency			7.0	4	3	5	8											$\begin{array}{c} \underline{2.0^{-2.15}}\\ LL=49 & PI=28\\ FC=70.6\%\\ w_c=16.2\% \end{array}$
	Below 9': Tan and gray color			9.0	4	4	4	8											9.0'-10.5': LL=37 PI=18
	Below 14': Stiff consistency			14.0	4	5	5	10		•									$FC=75.0\%$ $w_{c}=22.0\%$ $\frac{14.0'-15.5':}{LL=25 PI=11}$ $FC=61.7\%$ $w_{c}=17.6\%$
	Below 19': Medium Stiff consistency, orange brown and brown color			19.0 20.5	3	2	3	5											
	(Fill)			22.0															
	Very moist, medium stiff, brown, fine sandy lean CLAY , trace organics, trace shell	(CL)		24.0	3	3													
	(Alluvial/Marine) Continued on Sheet 2			25.5 27.0		_	3	6						_					

	~	Blu	ie F	Ríde	e (-]ec	oteo	chnie	ca	1, 1 1	C								Bc	oring	g Lo
$\overline{}$		2	,	• 0														B	8-1	(Sł	nt. 2 of 2
Proje	Project: Kingspoint Dam James City County, Virginia Drilling Contractor: Ayers and Ayers, Inc. Drilling Method/Equip: HSA, 2-1/4" I.D., CME 45B ATV Rig Hammer Type: Manual Drill Date: 2/4/14 BRG Project No.: 150																				
BRG Clien	Project No.: 150 t: Stantec							GS H Bori	EL ng	.: Unl Loca	knov tion:	vn N	37.24	1099°	W	-76.	7004	8°			
Elev. (ft.)	Material Description	USCS	Sample	Jepth (ft.)	6"	Blow 6''	s 6''	N-value		SPT Wate	N-valu r Cont	e (bj cent 4(pf)	60	Atterbe	erg Lir	nits LL 100		Re	emark	s
	Continued from Sheet 1			27.0			-				-	-	-		-	-		┥━╹			
	Very moist, medium stiff, brown and gray, fine to medium sandy CLAY	(CL)		28.0 29.0	1	2	3	5													
	(Alluvial/Marine)																				
	Very moist, medium stiff, brown and gray, fat CLAY with fine sand	(CH)		32.0	2																
	(Alluvial/Marine)		-	35.5 36.0	2	3	3	6	•												
	tan and gray, clayey fine to medium SAND	(SC)																			

38.5 ₄ 5

40.0

7 12

(Alluvial/Marine)

Boring Terminated at 40.0 ft.

RI	D:1	C	1 1	11	\sim
Dine	Nage	Geotec	nnicai,	LL	C

Boring Log

B-2 (Sht. 1 of 2)

Project: Kingspoint Dam James City County, Virginia Drilling Contractor: Ayers and Ayers, Inc. Drilling Method/Equip: HSA, 2-1/4" I.D., CME 45B ATV Rig Hammer Type: *Manual* Drill Date: 2/4/14 GS EL.: Unknown Boring Location: N 37.24113° W -76.70025°

BRG Project No.: 150

Client: Stantec

(ft.)	Material	Š	ple	(ft.)		Blow	s	lue		• SPT N-value (bpf)		Atterberg Limits								
Elev.	Description	USC	Sam	epth	6''	6"	6"	V-val	ľ	V	د د	r Co 0	ntent ^	t O	6	¶¶ n	80	10		Remarks
I		-		Q	0	0	0	2			2	0	4		0	5	80			~1 inches mulch on surface
	Moist to very moist, stiff, red brown, tan and gray, lean CLAY with sand, trace organic matter (occasional sticks, roots)	(F)		0.0	2	4	6	10		•										* 6
	Below 2': "Moist"			3.5	3	6	11	17	*											large stick
				4.0 5.5	6	6	6	12		_										Water: -Apparent perched water at
	(Fill)			7.0	1	2	3	5												-Not encountered upon completion (through HSA) - 36 ft. (through uncased borehole)
	Very moist, medium stiff, gray and brown, lean CLAY with sand, isolated zones of sand	(F)		9.0	3	3	2	5												Cave-in: 37 ft. $7.0'-8.5'$:
	(Fill) Very moist, soft, gray and red		·	12.0																LL=32 PI=16 FC=70.3% w _c =19.9%
	brown (mot.), lean CLAY, with sand	(F)		14.0	1	1														
	(Fill)			15.5			1	2												
	Very moist, soft, gray and brown, sandy lean CLAY , trace organics	(F)		17.0																
				19.0 20.5	1	1	2	3												
	(Fill)			23.0																
	Very moist, soft, brown, fine sandy lean CLAY , trace organics	(CL)		24.0	1	2		2												
	(Alluvial/Marine) Continued on Sheet 2			25.5 27.0			1	3			_			_						

RILL Piller	Castalia

Boring Log

B-2 (Sht. 2 of 2)

Project: Kingspoint Dam James City County, Virginia Drilling Contractor: Ayers and Ayers, Inc. Drilling Method/Equip: HSA, 2-1/4" I.D., CME 45B ATV Rig Hammer Type: *Manual* Drill Date: 2/4/14 GS EL.: Unkknown Boring Location: N 37.24113° W -76.70025°

BRG Project No.: 150

Client: Stantec

(ft.)	Material	Š	ple	ft.)		Blow	s	au	•	SPT	N-val	ue (t	opf)	Atterberg Limits						
clev.	Description	JSC	Samj	epth (~	V-val		Wate	r Coi	ntent		0		<u>. </u>				Remarks
E	Continued from Sheet 1		•1	Ã	6''	6"	6"	Z		2	:0	4	0	6	0	8	0	10	0	
				27.0					ÎΤ											
	Very moist, medium stiff,			28.0																
	brown and gray, lean CLAY , with sand			29.0	1															
				30.5		3	2	5												
	(Alluvial/Marine)			00.0																
	Very moist, medium stiff.			32.0					\vdash	-				-	_	_		-		
	brown and gray, sandy lean CLAY	(CL)																		
				34.0	2															
					_	3	2	6												
	(Alluvial/Marine)			35.5			3	0	IT											
	Very moist, stiff, dark gray, fine sandy CLAY	(CL/		50.0																
		CH)																		
				38.5	2															
	(Marine)					4	5	9												
	Boring Terminated at 40.0 ft.		_	40.0			Ū	Ū												

Boring Log Interpretation

The convention used to describe the soil strata on the boring logs is described below. This procedure in general accordance with ASTM D 2487 and ASTM D 2488. The soil descriptions typically follow this format:

"Moisture, Relative Density/Consistency, Color, Secondary component, PRIMARY COMPONENT, minor components and additional comments"

Moisture:	"Dry"	 Absence of moisture
	"Moist"	- Damp, but no visible water
	"Wet"	– Visible water within sample.

Relative Density/Consistency:

Relative Density is used to describe soils that are predominantly Coarse-Grained (Sands and Gravels). *Consistency* is used to describe soils that are predominantly Fine-Grained (Silts and Clays). Relative Density/Consistency descriptions are based on the SPT N-values as follows:

Relat	ive Density	Consistency							
	SPT N-value		SPT N-value						
Very Loose	0-4	Very Soft	0 – 1						
Loose	5 - 10	Soft	2 - 4						
Medium Dense	11 – 30	Medium Stiff	5 – 8						
Dense	31 - 50	Stiff	9 - 15						
Very Dense	~ 50	Very Stiff	16 - 30						
very Delise	2 50	Hard	> 30						

Primary and Secondary Components:

Soil Type in	n Terms of Sieve Size
Boulder	< 12 inches
Cobble	3-12 inches
Gravel (coarse)	$\frac{3}{4}$ " – 3 inches
Gravel (fine)	#4 – ³ ⁄4"
Sand (coarse)	#10 - #4
Sand (medium)	#40-#10
Sand (fine)	#200 - #40
Silt	< #200
Clay	< #200

Coarse-grained soils can be classified based on their grain-size distribution (gradation curves). Fine-grained soils are classified according to their plasticity, which can be determined using performance tests (e.g., Atterberg Limits plotted on the Plasticity chart shown below).

Boring Log Interpretation (con't)

USCS (Unified Soil Classification System) Group Symbols:

USCS Group Symbols are two letter designations.

The first letter represents the primary constituent (all soil types). The second letter represents the secondary constituent (in the case of predominantly coarse-grained soils) or the second letter represents the plasticity (in the case of predominantly fine-grained soils):

Minor Components:

According to ASTM D 2488, the terms used to describe to describe the minor components are based on estimations of the quantity of that component within the sample as follows:

Term	Estimated Quantity (by weight)
"trace"	< 5%
"few"	5 - 10 %
"little"	15 - 25%
"some"	30-45%

Miscellaneous Terms:

- **PP Pocket Penetrometer**
- FC Fines Content (quantity of silt and clay)
- $w_{\rm c}$ Water Content
- LL Liquid Limit
- PL Plastic Limit
- PI Plasticity Index
- Mot. Mottled appearance

APPENDIX "C"

USDA SOIL MAP DATA

*Map obtained from websoilsurvey.nrcs.usda.gov

Primary Soil Unit:

Map Unit Symbol	Map Unit Name	Typical Profile
15F	Emporia complex, 25 to 50% slopes	0-13": Fine sandy loam 13"-58": Loam 58"-75": Sandy clay loam

James City and York Counties and the City of Williamsburg, Virginia

15F—Emporia complex, 25 to 50 percent slopes

Map Unit Setting

Elevation: 20 to 150 feet *Mean annual precipitation:* 40 to 55 inches *Mean annual air temperature:* 57 to 61 degrees F *Frost-free period:* 165 to 193 days

Map Unit Composition

Emporia and similar soils: 75 percent *Minor components:* 5 percent

Description of Emporia

Setting

Landform: Marine terraces Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Convex Parent material: Marine deposits

Properties and qualities

Slope: 25 to 50 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr) Depth to water table: About 36 to 54 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: Not prime farmland Land capability (nonirrigated): 7e Hydrologic Soil Group: B

Typical profile

0 to 13 inches: Fine sandy loam 13 to 58 inches: Loam 58 to 75 inches: Sandy clay loam

Minor Components

Johnston

Percent of map unit: 5 percent Landform: Flood plains Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

Engineering Properties

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Hydrologic group is a group of soils having similar runoff potential under similar storm and cover conditions. Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonal high water table, saturated hydraulic conductivity after prolonged wetting, and depth to a layer with a very slow water transmission rate. Changes in soil properties caused by land management or climate changes also cause the hydrologic soil group to change. The influence of ground cover is treated independently. There are four hydrologic soil groups, A, B, C, and D, and three dual groups, A/D, B/D, and C/D. In the dual groups, the first letter is for drained areas and the second letter is for undrained areas.

The four hydrologic soil groups are described in the following paragraphs:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and *plasticity index* (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Report—Engineering Properties

Absence of an entry indicates that the data were not estimated. The asterisk '*' denotes the representative texture; other possible textures follow the dash.

	Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Frag	ments	Percentage passing sieve number—				Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
4—Beaches														
Beaches	70		0-60	Coarse sand, sand, fine sand	SP	A-1, A-3	0	0	80-100	78-100	39-80	4-35	7-9	NP
8B—Caroline fine sandy loam, 2 to 6 percent slopes														
Caroline	85	С	0-13	Loam, sandy loam, fine sandy loam	CL, CL- ML	A-4	0	0	90-100	85-100	85-100	50-90	20-30	4-10
			13-47	Clay loam, clay, sandy clay loam, sandy clay	CH, CL	A-7	0	0	90-100	85-100	80-100	35-95	25-61	7-27
			47-72	Clay loam, clay, fine sandy loam, sandy clay	CH, CL, SC, SC- SM, ML	A-4, A-6, A-7	0	0	90-100	85-100	60-100	30-95	20-61	4-27
10B—Craven fine sandy loam, 2 to 6 percent slopes														
Craven	80	D	0-9	Fine sandy loam, silt loam, loam	CL, ML, SC, SM	A-4	0	0	100	98-100	58-100	29-90	13-31	NP-10
			9-53	Clay, silty clay, silty clay loam, clay loam, sandy clay loam, sandy clay	CL, CH	A-7	0	0	100	98-100	83-100	44-95	34-61	12-27
			53-80	Sandy clay loam, sandy loam, loamy sand	SC, SC- SM, SM	A-2, A-4, A-6	0	0	100	98-100	49-100	14-55	12-38	NP-14

	Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Fragi	ments	Percentage passing sieve number—				Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
10C—Craven fine sandy loam, 6 to 10 percent slopes														
Craven	80	D	0-9	Fine sandy loam, silt loam, loam	CL, ML, SC, SM	A-4	0	0	100	98-100	58-100	29-90	13-31	NP-10
			9-53	Clay, silty clay, silty clay loam, clay loam, sandy clay loam, sandy clay	CL, CH	A-7	0	0	100	98-100	83-100	44-95	34-61	12-27
			53-80	Sandy clay loam, sandy loam, loamy sand	SC, SC- SM, SM	A-2, A-4, A-6	0	0	100	98-100	49-100	14-55	12-38	NP-14
11C—Craven-Uchee complex, 6 to 10 percent slopes														
Craven	35	D	0-9	Fine sandy loam, silt loam, loam	CL, ML, SC, SM	A-4	0	0	100	98-100	58-100	29-90	13-31	NP-10
			9-53	Clay, silty clay, silty clay loam, clay loam, sandy clay loam, sandy clay	CL, CH	A-7	0	0	100	98-100	83-100	44-95	34-61	12-27
			53-80	Sandy clay loam, sandy loam, loamy sand	SC, SC- SM, SM	A-2, A-4, A-6	0	0	100	98-100	49-100	14-55	12-38	NP-14
Uchee	35	В	0-24	Loamy fine sand, sand, loamy sand	SM	A-1-b, A-2	0	0	80-100	78-100	40-70	15-30	10-16	NP-2
			24-56	Sandy loam, sandy clay loam, clay, sandy clay	SC, SC- SM	A-2, A-4, A-6	0	0	80-100	78-100	46-100	23-95	14-52	1-22
			56-65	Sandy loam, sandy clay loam, sandy clay	CL, SC	A-2-6, A-6, A-7	0	0	80-100	78-100	46-95	23-60	18-43	3-17

	Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Frag	ments	Percent	age passi	Liquid	Plasticit		
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
14B—Emporia fine sandy loam, 2 to 6 percent slopes														
Emporia	80	В	0-13	Fine sandy loam, loam, sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-4, A-6	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Clay loam, sandy clay loam, loam, sandy loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14
15D—Emporia complex, 10 to 15 percent slopes														
Emporia	75	В	0-13	Sandy loam, loam, fine sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-6, A-4	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Clay loam, sandy clay loam, loam, sandy loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14

	Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Frag	ments	Percent	age passi	Liquid	Plasticit		
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
15F—Emporia complex, 25 to 50 percent slopes														
Emporia	75	В	0-13	Sandy loam, loam, fine sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-4, A-6	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Loam, sandy loam, clay loam, sandy clay loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14
17—Johnston complex														
Johnston	75	A/D	0-34	Silty clay loam, silt loam, loam, fine sandy loam	CL-ML, ML, OL	A-4, A-6	0	0	100	100	70-100	40-95	13-38	NP-14
			34-60	Sandy clay loam, sandy loam, sand, fine sandy loam	SC, SM	A-2, A-4	0	0	100	100	50-90	5-55	7-34	NP-12
18B—Kempsville fine sandy loam, 2 to 6 percent slopes														
Kempsville	80	A	0-14	Fine sandy loam, sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0	0-3	90-100	85-100	51-85	26-55	12-20	NP-4
			14-55	Sandy loam, fine sandy loam, loam, sandy clay loam	SC-SM, CL, ML, SC, SM	A-2, A-4	0	0-3	90-100	85-100	51-90	26-55	18-38	3-14
			55-68	Loamy sand, fine sand, loamy fine sand, sandy loam, fine sandy loam, sandy clay loam	SM, ML	A-2	0	0-8	85-100	80-100	40-95	12-60	9-25	NP-7

	Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map unit symbol and	Pct. of	Hydrolo	Depth	pth USDA texture	Classi	fication	Fragi	nents	Percent	age passi	ng sieve i	number—	Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
19B—Kempsville- Emporia fine sandy loams, 2 to 6 percent slopes														
Kempsville	50	A	0-14	Fine sandy loam, sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0	0-3	90-100	85-100	51-85	26-55	12-20	NP-4
			14-55	Sandy loam, fine sandy loam, loam, sandy clay loam	SC-SM, CL, ML, SC, SM	A-2, A-4	0	0-3	90-100	85-100	51-90	26-55	18-38	3-14
			55-68	Loamy sand, fine sand, loamy fine sand, sandy loam, fine sandy loam, sandy clay loam	SM, ML	A-2	0	0-8	85-100	80-100	40-95	12-60	9-25	NP-7
Emporia	30	В	0-13	Sandy loam, loam, fine sandy loam	ML, SM	A-4	0	0-5	95-100	93-100	55-95	27-75	13-23	NP-6
			13-58	Sandy clay loam, sandy loam, clay loam, fine sandy loam, loam	CL, SC	A-4, A-6	0	0-3	95-100	93-100	55-100	27-80	23-38	6-14
			58-75	Clay loam, sandy clay loam, loam, sandy loam	CL, CL- ML, SC, SC-SM	A-4, A-6	0	0-8	95-100	93-100	55-100	27-80	23-38	6-14
21—Levy silty clay														
Levy	85	C/D	0-18	Silty clay	ML, CH, CL	A-6, A-7	0	0	100	100	95-100	90-95	38-61	14-27
			18-80	Silty clay, clay, silty clay loam	ML, CH, CL	A-6, A-7	0	0	100	100	95-100	85-95	38-61	14-27

Engineering Properties–James City and York Counties and the City of Williamsburg, Virginia														
Map unit symbol and	Pct. of	Hydrolo	Depth	USDA texture	Classi	fication	Fragi	ments	Percentage passing sieve number—				Liquid	Plasticit
soil name	map unit	gic group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	y index
			In				Pct	Pct					Pct	
29B—Slagle fine sandy loam, 2 to 6 percent slopes														
Slagle	80	С	0-9	Fine sandy loam, sandy loam, loam	SC-SM, SM	A-2, A-4	0	0-3	95-100	90-100	54-95	27-75	14-23	1-6
			9-25	Sandy clay loam, loam, clay loam	ML, CL, CL-ML, SC, SC- SM	A-4, A-6	0	0-3	95-100	90-100	72-100	32-80	18-43	3-17
			25-60	Sandy clay loam, loam, clay loam, clay, sandy clay, sandy loam, loamy sand	ML, CL, SC	A-4, A-6, A-7	0	0-3	95-100	90-100	45-100	14-95	10-52	NP-22
31B—Suffolk fine sandy loam, 2 to 6 percent slopes														
Suffolk	80	В	0-14	Sandy loam, fine sandy loam	CL-ML, ML, SC- SM, SM	A-2, A-4	0	0	98-100	98-100	58-85	29-55	14-23	1-6
			14-40	Sandy clay loam, sandy loam, fine sandy loam	CL, SC	A-4, A-2, A-6	0	0	98-100	98-100	58-90	29-55	16-38	2-14
			40-64	Fine sandy loam, sandy loam, fine sand, sand, loamy fine sand, loamy sand	SC-SM, SM, SP	A-1, A-2, A-3, A-4	0	0	98-100	98-100	30-80	3-50	8-25	NP-7

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

Physical Soil Properties

This table shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/3- or 1/10-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.
Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates in the table are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity (Ksat) is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of organic matter in a soil can be maintained by returning crop residue to the soil.

Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in the table as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and Ksat. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook."

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

Report—Physical Soil Properties

	Physical Soil Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E f	irosic actor	on 's	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	Index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
4—Beaches														
Beaches	0-60	-99-	- 2-	0- 0- 2	1.35-1.85	141.00	0.03-0.05	0.0-2.9	0.0-0.1				1	220
8B—Caroline fine sandy loam, 2 to 6 percent slopes														
Caroline	0-13	-58-	-25-	15-18- 25	1.35-1.45	4.00-14.00	0.16-0.22	0.0-2.9	0.5-1.0	.32	.32	5	3	86
	13-47	-40-	-20-	20-40- 60	1.40-1.50	0.01-4.00	0.13-0.20	3.0-5.9	0.0	.24	.24			
	47-72	-35-	-20-	15-45- 60	1.40-1.55	0.01-4.00	0.11-0.17	3.0-5.9	0.0	.20	.20			
10B—Craven fine sandy loam, 2 to 6 percent slopes														
Craven	0-9	-69-	-15-	7-17- 27	1.30-1.45	1.40-14.00	0.12-0.15	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-53	-23-	-29-	30-48- 60	1.30-1.45	0.42-1.40	0.12-0.15	3.0-5.9	0.0	.24	.24			
	53-80	-57-	-18-	5-25- 35	1.35-1.60	1.40-42.00	0.08-0.14	0.0-2.9	0.0	.20	.20			
10C—Craven fine sandy loam, 6 to 10 percent slopes														
Craven	0-9	-69-	-15-	7-17- 27	1.30-1.45	1.40-14.00	0.12-0.15	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-53	-23-	-29-	30-48- 60	1.30-1.45	0.42-1.40	0.12-0.15	3.0-5.9	0.0	.24	.24			
	53-80	-57-	-18-	5-25- 35	1.35-1.60	1.40-42.00	0.08-0.14	0.0-2.9	0.0	.20	.20			

			Physica	I Soil Prop	erties–Jam	es City and York	Counties and	the City of Willia	ımsburg, Vi	rginia	l			
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E	rosio actor	on 's	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	Index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
11C—Craven- Uchee complex, 6 to 10 percent slopes														
Craven	0-9	-69-	-15-	7-17- 27	1.30-1.45	1.40-14.00	0.12-0.15	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-53	-23-	-29-	30-48- 60	1.30-1.45	0.42-1.40	0.12-0.15	3.0-5.9	0.0	.24	.24			
	53-80	-57-	-18-	5-25- 35	1.35-1.60	1.40-42.00	0.08-0.14	0.0-2.9	0.0	.20	.20			
Uchee	0-24	-77-	-16-	3- 7- 10	1.30-1.70	42.00-141.00	0.05-0.10	0.0-2.9	0.3-3.0	.28	.28	5	2	134
	24-56	-57-	-18-	8-25- 50	1.40-1.60	4.00-14.00	0.10-0.15	0.0-2.9	0.0	.24	.24			
	56-65	-65-	-17-	12-18- 40	1.40-1.60	1.40-14.00	0.10-0.16	3.0-5.9	0.0	.24	.24			
14B—Emporia fine sandy loam, 2 to 6 percent slopes														
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			
15D—Emporia complex, 10 to 15 percent slopes														
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			

			Physica	al Soil Prop	erties–Jam	es City and York	Counties and	the City of Willia	amsburg, Vi	rginia	I			
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E	Erosic factor	on 's	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	Index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
15F—Emporia complex, 25 to 50 percent slopes														
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			
17—Johnston complex														
Johnston	0-34	-31-	-57-	7-13- 35	1.30-1.55	14.00-42.00	0.20-0.26	0.0-2.9	3.0-8.0	.37	.37	5	5	56
	34-60	-52-	-36-	0-13- 30	1.45-1.65	42.00-141.00	0.06-0.12	0.0-2.9	0.0	.37	.37			
18B— Kempsville fine sandy loam, 2 to 6 percent slopes														
Kempsville	0-14	-69-	-22-	5-10- 15	1.30-1.40	14.00-42.00	0.08-0.14	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	14-55	-57-	-18-	12-25- 35	1.30-1.45	14.00-42.00	0.12-0.18	0.0-2.9	0.0	.20	.20			
	55-68	-71-	-17-	2-12- 20	1.35-1.65	4.00-14.00	0.12-0.18	0.0-2.9	0.0	.28	.28			

			Physica	I Soil Prop	erties–Jame	es City and York	Counties and	the City of Willia	amsburg, Vi	rginia	I			
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E	rosic factor	on 'S	Wind erodibility	Wind erodibility
					density	conductivity	capacity			Kw	Kf	т	group	index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
19B— Kempsville- Emporia fine sandy loams, 2 to 6 percent slopes														
Kempsville	0-14	-69-	-22-	5-10- 15	1.30-1.40	14.00-42.00	0.08-0.14	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	14-55	-57-	-18-	12-25- 35	1.30-1.45	14.00-42.00	0.12-0.18	0.0-2.9	0.0	.20	.20			
	55-68	-71-	-17-	2-12- 20	1.35-1.65	4.00-14.00	0.12-0.18	0.0-2.9	0.0	.28	.28			
Emporia	0-13	-71-	-17-	7-13- 18	1.30-1.40	14.00-42.00	0.10-0.17	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	13-58	-45-	-29-	18-27- 35	1.35-1.60	0.42-14.00	0.10-0.18	3.0-5.9	0.0	.32	.32			
	58-75	-56-	-18-	18-27- 35	1.30-1.50	4.00-14.00	0.12-0.20	0.0-2.9	0.0	.24	.24			
21—Levy silty clay														
Levy	0-18	- 6-	-47-	35-48- 60	0.50-1.10	0.42-1.40	0.16-0.22	6.0-8.9	5.0-10.0	.24	.24	5	8	0
	18-80	- 6-	-47-	35-48- 60	0.50-1.10	0.42-1.40	0.16-0.22	6.0-8.9	1.0-3.0	.28	.28			
29B—Slagle fine sandy loam, 2 to 6 percent slopes														
Slagle	0-9	-71-	-17-	8-13- 18	1.30-1.45	14.00-42.00	0.10-0.14	0.0-2.9	0.5-2.0	.28	.28	5	3	86
	9-25	-34-	-37-	12-30- 40	1.30-1.45	4.00-14.00	0.10-0.18	0.0-2.9	0.0	.32	.32			
	25-60	-34-	-37-	3-30- 50	1.35-1.60	0.01-4.00	0.12-0.18	3.0-5.9	0.0	.32	.32			

	Physical Soil Properties–James City and York Counties and the City of Williamsburg, Virginia													
Map symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter	E f	rosio actor	n s	Wind erodibility	Wind erodibility
					density	conductivity	сарасну			Kw	Kf	т	group	Index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
31B—Suffolk fine sandy loam, 2 to 6 percent slopes														
Suffolk	0-14	-69-	-16-	10-15- 18	1.35-1.45	14.00-42.00	0.10-0.16	0.0-2.9	0.5-2.0	.24	.24	5	3	86
	14-40	-57-	-18-	10-25- 35	1.40-1.50	4.00-14.00	0.10-0.15	0.0-2.9	0.0	.24	.24			
	40-64	-71-	-17-	1-12- 20	1.40-1.50	14.00-141.00	0.04-0.10	0.0-2.9	0.0	.24	.24			
W—Water														
Water	_	_	_	_	_	_	_	—	_					

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

Particle Size and Coarse Fragments

This table shows estimates of particle size distribution and coarse fragment content of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Total fragments is the content of fragments of rock and other materials larger than 2 millimeters in diameter on volumetric basis of the whole soil.

Fragments 2-74 mm refers to the content of coarse fragments in the 2 to 74 millimeter size fraction.

Fragments 75-249 *mm* refers to the content of coarse fragments in teh 75 to 249 millimeter size fraction.

Fragments 250-599 mm refers to the content of coarse fragments in the 250 to 599 millimeter size fraction.

Fragments >=600 *mm* refers to the content of coarse fragments in the greater than or equal to 600 millimeter size fraction.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

Report—Particle Size and Coarse Fragments

		Particle S	ize and Co	arse Fragn	nents-James (City and York Countie	s and the City of V	/illiamsburg, Virginia		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
4—Beaches										
Beaches	H1	0-60	-99-	- 2-	0- 0- 2	7	7	—	—	—
8B—Caroline fine sandy loam, 2 to 6 percent slopes										
Caroline	H1	0-13	-58-	-25-	15-18- 25	0	0	—	—	—
	H2	13-47	-40-	-20-	20-40- 60	0	0	—	—	—
	H3	47-72	-35-	-20-	15-45- 60	0	0	—	—	—
10B—Craven fine sandy loam, 2 to 6 percent slopes										
Craven	H1	0-9	-69-	-15-	7-17- 27	0	0	_	_	_
	H2	9-53	-23-	-29-	30-48- 60	0	0	_	—	_
	H3	53-80	-57-	-18-	5-25- 35	0	0	—	_	—
10C—Craven fine sandy loam, 6 to 10 percent slopes										
Craven	H1	0-9	-69-	-15-	7-17- 27	0	0	—	-	_
	H2	9-53	-23-	-29-	30-48- 60	0	0	_	_	_
	H3	53-80	-57-	-18-	5-25- 35	0	0	—	_	_

		Particle S	ize and Co	arse Fragn	nents-James (City and York Countie	s and the City of V	/illiamsburg, Virginia		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
11C—Craven-Uchee complex, 6 to 10 percent slopes										
Craven	H1	0-9	-69-	-15-	7-17- 27	0	0	—	_	_
	H2	9-53	-23-	-29-	30-48- 60	0	0	—	—	—
	H3	53-80	-57-	-18-	5-25- 35	0	0	—	—	—
Uchee	H1	0-24	-77-	-16-	3- 7- 10	0	0	—	—	—
	H2	24-56	-57-	-18-	8-25- 50	0	0	—	—	—
	H3	56-65	-65-	-17-	12-18- 40	0	0	—	—	—
14B—Emporia fine sandy loam, 2 to 6 percent slopes										
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	—	-
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	-	—
	H3	58-75	-56-	-18-	18-27- 35	0	0	0	_	_
15D—Emporia complex, 10 to 15 percent slopes										
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	-	—
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	—	—
	H3	58-75	-56-	-18-	18-27- 35	0	0	0	-	—
15F—Emporia complex, 25 to 50 percent slopes										
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	-	-
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	-	-
	H3	58-75	-56-	-18-	18-27- 35	0	0	0	_	_

		Particle S	ize and Co	arse Fragn	nents-James (City and York Countie	s and the City of V	Villiamsburg, Virginia		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
17—Johnston complex										
Johnston	H1	0-34	-31-	-57-	7-13- 35	—	_	—	—	_
	H2	34-60	-52-	-36-	0-13- 30	_	_	_	_	_
18B—Kempsville fine sandy loam, 2 to 6 percent slopes										
Kempsville	H1	0-14	-69-	-22-	5-10- 15	0	0	0	_	—
	H2	14-55	-57-	-18-	12-25- 35	0	0	0	_	_
	Н3	55-68	-71-	-17-	2-12- 20	0	0	0	—	_
19B—Kempsville- Emporia fine sandy loams, 2 to 6 percent slopes										
Kempsville	H1	0-14	-69-	-22-	5-10- 15	0	0	0	—	—
	H2	14-55	-57-	-18-	12-25- 35	0	0	0	—	_
	H3	55-68	-71-	-17-	2-12- 20	0	0	0	—	—
Emporia	H1	0-13	-71-	-17-	7-13- 18	0	0	0	—	—
	H2	13-58	-45-	-29-	18-27- 35	0	0	0	—	—
	НЗ	58-75	-56-	-18-	18-27- 35	0	0	0	—	—
21—Levy silty clay										
Levy	H1	0-18	- 6-	-47-	35-48- 60	-	—	-	-	—
	H2	18-80	- 6-	-47-	35-48- 60	-	_	-		

		Particle S	ize and Co	arse Fragm	nents-James C	City and York Countie	s and the City of V	Villiamsburg, Virginia		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		In	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
29B—Slagle fine sandy loam, 2 to 6 percent slopes										
Slagle	H1	0-9	-71-	-17-	8-13- 18	0	0	0	_	—
	H2	9-25	-34-	-37-	12-30- 40	0	0	0	_	—
	H3	25-60	-34-	-37-	3-30- 50	0	0	0	_	—
31B—Suffolk fine sandy loam, 2 to 6 percent slopes										
Suffolk	H1	0-14	-69-	-16-	10-15- 18	0	0	—	_	—
	H2	14-40	-57-	-18-	10-25- 35	0	0	—	—	—
	H3	40-64	-71-	-17-	1-12- 20	0	0	—	—	—
W—Water										
Water	_	_	_	_	—	—	_	_	_	_

Data Source Information

Soil Survey Area: James City and York Counties and the City of Williamsburg, Virginia Survey Area Data: Version 13, Dec 11, 2013

APPENDIX D

LABORATORY TEST RESULTS

Client:	Blue Ridge Geotechnical,	LLC			
Project:	Kingspoint Dam				
Location:	Petersburg, VA			Project No:	GTX-301446
Boring ID:		Sample Type:		Tested By:	jek
Sample ID:		Test Date:	02/13/14	Checked By:	jdt
Depth :		Test Id:	288530		

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	B-1	2-3.5 ft.	Moist, yellowish brown clay with sand	16.2
	B-1	9-10.5 ft.	Moist, yellowish brown clay with sand	22.0
	B-1	14-15.5 ft.	Moist, yellowish brown sandy clay	17.6
	В-2	7-8.5 ft.	Moist, yellowish brown clay with sand	19.9

Notes: Temperature of Drying : 110° Celsius

Client:	Blue Ridge	e Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	g, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	2-3.5 ft.		Test Id:	288523		
Test Comm	nent:					
Sample De	scription:	Moist, yellowis	sh brown clay v	vith sand		
Sample Co	mment:					

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	9-10.5 ft.		Test Id:	288524		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay v	ith sand		
Sample Cor	mment:					

Sand/Gravel Particle Shape : ---

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	14-15.5 ft.		Test Id:	288525		
Test Comm	ent:					
Sample Description: Moist, yellow		Moist, yellowis	sh brown sandy	∕ clay		
Sample Cor	mment:					

Sample/Test Description Sand/Gravel Particle Shape : ---

Client:	Blue Ridge Geotechnical, LLC					
Project:	Kingspoint Dam					
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	jbr
Sample ID:	B-2		Test Date:	02/12/14	Checked By:	jdt
Depth :	7-8.5 ft.		Test Id:	288526		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay w	ith sand		
Sample Cor	nment:					

Sample/Test Description

Client:	Blue Ridge Geotechnical, LLC					
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	2-3.5 ft.		Test Id:	288519		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay w	ith sand		
Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-1		2-3.5 ft.	16	49	21	28	0	lean clay with sand (CL)

Sample Prepared using the WET method 5% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	Blue Ridge	Blue Ridge Geotechnical, LLC				
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt
Depth :	9-10.5 ft.		Test Id:	288520		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay v	vith sand		
Sample Cor	mment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-1		9-10.5 ft.	22	37	19	18	0	lean clay with sand (CL)

Sample Prepared using the WET method 4% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	Blue Ridge	Blue Ridge Geotechnical, LLC					
Project:	Kingspoint Dam						
Location:	Petersburg	, VA			Project No:	GTX-301446	
Boring ID:			Sample Type:	bag	Tested By:	cam	
Sample ID:	B-1		Test Date:	02/12/14	Checked By:	jdt	
Depth :	14-15.5 ft.		Test Id:	288521			
Test Comm	ent:						
Sample Des	scription:	Moist, yellowis	sh brown sandy	[,] clay			
Sample Cor	nment:						

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-1		14-15.5 ft.	18	25	14	11	0	Sandy lean clay (CL)

Sample Prepared using the WET method 8% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Client:	Blue Ridge	Geotechnical,	LLC			
Project:	Kingspoint	Dam				
Location:	Petersburg	, VA			Project No:	GTX-301446
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	B-2		Test Date:	02/12/14	Checked By:	jdt
Depth :	7-8.5 ft.		Test Id:	288522		
Test Comm	ent:					
Sample Des	scription:	Moist, yellowis	sh brown clay w	ith sand		
Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	B-2		7-8.5 ft.	20	32	16	16	0	lean clay with sand (CL)

Sample Prepared using the WET method 4% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Kingspoint Dam Repair

Budget Estimate & Scope of Work

Table of Contents

Table of Contents
Dam Repair Budget Estimate 4
Technical Management
Task No. 1 – Formal Site Inspection & Design 5
Task No. 2 – Mobilization, E& S, and Water Control/Diversion
Task No.3 – Existing Structure Removal & Embankment Preparation
Task No. 4 – Slipline6
Task No. 5 – Restore Embankment 15
Task No. 6 – Demobilization, Clean-up 15
Project Schedule & Submittals 16
Statement of Qualifications 17
Company Background
Licensing & Insurance17
Bander Smith, LLC - Team Personnel 19
Cameron J. Smith – Project Manager19
Austen C. Bander – Project Superintendent19
Paul L. Wood – Project Superintendent & Lead Diver

February 27, 2014

Sent via email to chris.kuhn@stantec.com

Chris Kuhn WEG, now Stantec

Subject: Kingspoint Dam Repair Budget Estimate

Dear Mr. Kuhn,

Bander Smith, LLC is pleased to offer the following budget estimate for the repair to Kingspoint Dam. Bander Smith, LLC is a specialty contracting firm that focuses solely on dam repair and inspection. Our services draw from all facets of the construction industry but we apply those skills to the specific requirements of dam and marine construction.

We have included in this package a brief description of the work to be performed and information on our company. The estimates are based on information and pictures provided to us via email on Tuesday, February 25th, 2014.

I agree with your repair methodology outlined in your most recent email. The primary spillway outfall pipe should be evaluated with a pipe crawler system to confirm whether a slipline is possible and to accurately size the new liner pipe. The riser should also be inspected by a confined space entry penetration or the use of a drop camera system depending on the access. Once the site conditions are determined and a slipline is feasible, the outfall pipe should be rehabilitated and the downstream slope re-established. The root balls can be removed and re-compacted in conjunction with the spillway work.

The estimate provided is meant to assist the dam owner and/or future dam owner(s) with potential repairs costs. Until a formal site evaluate is made, several assumptions were made such as the size of the CMP outfall and construction access down to the dam.

Thank you for the opportunity to submit this package and please do not hesitate to contact us if you have any questions or concerns.

Sincerely,

Cameron J. Smith Owner Bander Smith, LLC P.O. Box 7188 Richmond, VA 23221 cameron@bandersmith.com

Dam Repair Budget Estimate

Bander Smith, LLC proposes to rehabilitate the dam as outlined in tasks (found under the technical management section, in two phases:

1. Phase 1 – Formal Site Evaluation (Task 1) - \$2,200.00 (FIRM PROPOSAL)

This task will allow Bander Smith, LLC to evaluate the site in more detail and determine the feasibility of the a slipline. The evaluation will not be reflective of a formal engineered design or analysis and does not include the use of divers.

2. Phase 2 – Primary Spillway Rehabilitation (Tasks 2 - 6) – \$85,000.00 - \$100,000.00

These phases will result in a fully function primary spillway system. All required permitting will be obtained before construction and is NOT included in this estimate.

Technical Management

All work will be performed by Bander Smith, LLC crews with proper insurance for dam work and experience in multiplel primary spillway rehabilitation projects. This proposal does not include any permits.

Task No. 1 -Formal Site Inspection & Design

Before any work is completed on site, the entire primary spillway will be evaluated. Important factors to determine are

- 1. Is a slipline is feasible
- 2. The condition and ID of the existing CMP
- 3. The size of the new HDPE liner
- 4. The condition of the riser and transition to new HDPE liner.

A pipe crawler system will be inserted into the outfall pipe starting on the downstream end. The water entering the riser should be controlled or completed during a period of dry weather. Water flowing into the primary spillway hampers the visual inspection. A permit confined space entry should be completed into the riser tower to determine the connection of the new outfall pipe liner into the riser. The riser should also be inspected for leaks and general stability. A brick riser structure is fairly uncommon.

Task No. 2 – Mobilization, E& S, and Water Control/Diversion

Access will be required for large equipment and concrete. Bander Smith assumes a significant amount of work will NOT be needed.

Depending on the amount of disturbance, an Erosion & Sediment control sediment plan may be required with the county. In which case, the parameters of that plan should be implemented. Regardless, E&S methods will be installed downstream to collect any muddy discharge that occurs during construction. Silt fence and straw bales will be installed where necessary.

Flows entering the pond will be accessed during initial construction. The lake will be need to be lowered several feet to provide adequate storage capacity while the slipline is being completed. Once the new liner is installed and any repairs made to the riser are finished, flows can be diverted back through the new primary spillway and discharged downstream. Pumps will be available if necessary.

Task No.3 - Existing Structure Removal & Embankment Preparation

The existing failed corrugated metal outfall pipe will be removed to stable CMP. Care needs to be taken when working around the failed embankment and a trench box may be required.

The eroded and un-compacted soils will be removed and the slopes cut back slightly. Ideally, 45 degree cuts are recommended to properly compact new soils into the existing earthen embankment. However, some concessions may need to be made due the proximity of the open cut in the embankment to the impoundment. The geotechnical report indicates good quality clay through the core of the dam which will help with the new/old soil cohesion when compacted.

The foundation conditions will need to be evaluated on site once all debris is removed.

Task No. 4 – Slipline

HDPE Pipe:

The most commonly used thermoplastic for sliplining is smooth walled HDPE pipe. HDPE pipe used for sliplining should meet the requirements of ASTM D 2447, D 3035, and F 714. The service life for HDPE pipe is 50- to 100-year service life.

HDPE pipe is very smooth. While the insertion of a new HDPE slipliner results in a smaller flow area, the reduced friction of the water passing through the slipliner results in only minimal losses of hydraulic capacity, if any. Typically, a new, smaller diameter HDPE slipliner has a hydraulic capacity equal to or greater than the original conduit. For example, the Manning's "n" value for smooth walled HDPE pipe is 0.009, compared to 0.010 for steel, 0.013 for concrete, and 0.022 for CMP.

Bander Smith, LLC proposes to line the existing CMP outfall with either an 18 inch DR26 or DR21 HDPE pipe. From the pictures, the existing CMP appears to be 24 inches. The pipe dimensions can be found in the chart below.

PE 34	06/3608		DR 21 (80 ps)	a	DR 26 (64 ps			HR 32.5 (50 p	si)
PIPE SIZE	AVG. O.D.	MIN. T.	AVG. LD.	WEIGHT LB/FT	MIN. T.	AVG. LD.	WEIGHT LB/FT	MIN. T.	AVG. LD.	WEIGH
3	3.500	0.167	3.146	0.77	0.135	3.214	0.63	0.108	3.271	0.50
4	4.500	0.214	4.046	1.26	0.173	4,133	1.03	0.138	4.207	0.83
5%	5.375	0.256	4.832	1.80	0.207	4.936	1.47	0.165	5.025	1.18
5	5.563	0.265	5.001	1.93	0.214	5.109	1.57	0.171	5.200	1.27
6	6.625	0.315	5.957	2.73	0.255	6.084	2.23	0.204	6.193	1.80
7	7.125	0.339	6.406	3.16	0.274	6.544	2.58	0.219	6.661	2.08
8	8.625	0.411	7.754	4.64	0.332	7.921	3.79	0.265	8.063	3.05
10	10.750	0.512	9.665	7.21	0.413	9.874	5.87	0.331	10.048	4.75
12	12.750	0.607	11.463	10.13	0.490	11.711	8.26	0.392	11.919	6.67
14	14.000	0.667	12.586	12.22	0.538	12.859	9.96	0.431	13.086	8.05
16	16.000	0.762	14.385	15.96	0.615	14.696	13.01	0.492	14.957	10.5
18	18.000	0.857	16.183	20.20	0.692	16.533	16.47	0.554	16.826	13.3
20	20.000	0.952	17.982	24.93	0.769	18.370	20.34	0.615	18.696	16.4
22	22.000	1.048	19.778	30.18	0.846	20.206	24.61	0.677	20.565	19.8
24	24.000	1.143	21.577	35.19	0.923	22.043	29.30	0.738	22.435	23.6
26	26.000	1.238	23.375	42.14	1.000	23.880	34.39	0.800	24.304	27.7
28	28.000	1.333	25.174	48.86	1.077	25.717	39.88	0.862	26.173	32.1
30	30.000	1.429	26.971	56.12	1.154	27.554	45.79	0.923	28.043	36.9
32	32.000	1.542	28.730	63.84	1.231	29.390	52.10	0.985	29.912	42.0
34	34.000	1.619	30.568	72.06	1.308	31.227	58.81	1.046	31.782	47.4
36	36.000	1.714	32.366	80.78	1.385	33.064	65.94	1.108	33.651	53.2
42	42.000	2,000	37.760	109.97	1.615	38.576	89.71	1.292	39.261	72.3
48	48.000	2.286	43.154	143.65	1.846	44.086	117.18	1.477	44.869	94.5
54	54.000	2.571	48.549	181.75	2.077	49.597	148.33	1.662	50.477	119.7
63	63.000	3.000	56.640	247.42	2.423	57.863	201.88	1.938	58.891	162.8

Eagle[™] PE sales at (800) 621-4404 for availability. * All dimensions are in inches unless noted otherwise.

O.D. : Outside Diameter

T. : Wall Thickness

HDPE Pipe

ISCO HDPE Product Catalog

Important Standards for High Density Polyethylene (HDPE) Pipe

Standards important for HDPE pipe relate to the resin the pipe is made from and the standards related to manufacturing sizes and tolerances. The American Society of Testing Materials (ASTM) standard for resin from which the pipe is made is ASTM D 3350-05, Standard Specification for Polyethylene Plastics Pipe and Fittings Materials. This standard defines the physical properties of the resin that the pipe is made from.

Pipe dimensions and manufacturing requirements:

ASTM F 714-05 Standard Specification for Polyethylene (PE) Pipe (SDR-PR) Based on Outside Diameter. This standard is used for most large diameter HDPE pipe (4" to 63") applications other than gas pipe.

ASTM D 2513-05 Standard Specification for Thermoplastic Gas Pressure Pipe, Tubing and Fittings. Polyethylene pipe and other plastic for natural gas distribution are described in great detail in this standard.

ASTM D 3035-03a Standard Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter. Most HDPE water tubing (1/2 inch to 3") is made to the dimensions in this standard. While pipe sizes up to 24" are provided, very little large diameter pipe is made to this standard.

Intallation Standards:

ASTM D 2321-05 Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity Flow Applications

ASTM D 2774-04 Standard Practice for Underground Installation of Thermoplastic Pressure Piping

ASTM F 1962 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit under Obstacles, Including River Crossings

ASTM F 585-94 Standard Practice for Insertion of Flexible Polyethylene Pipe into Existing Sewers

American Water Works Association Standards

ANSI/AWWA C 901-2005 Polyethylene Pressure Pipe and Tubing .5 in (13 mm) Through 3 in. (76 mm) for Water Services

ANSI/AWWA C 906-2006 Polyethylene Pipe and Fittings, 4 in (100 mm) Through 63 In (1,575 mm) for Water Distribution

Pipe Joining Standards:

ASTM F 2620 - Standard Practice for Heat Fusion of Polyethylene Pipe and Fittings

ASTM D 2657 - Standard Practice of Heat Fusion Joining of Polyolefin Pipe and Fittings

ASTM F 1290 - Standard Practice for Electrofusion Joining Polyolefin Pipe and Fittings

Fitting Standards

ASTM D 3261 Standard Specification for Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Butt Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (PE) Plastic Pipe and Tubing

© Copyright 2007 ISCO Industries, LLC. All Rights Reserved.

SCO

ASTM F 1055 Standard Specification for Electrofusion Fittings for Outside Diameter Controlled Polyethylene Pipe and Tubing

1-800-345-ISCO

www.isco-pipe.com

11

223	64			ISCO HDPE	Product Catalog		
	Specifications for HDPE P	Ipe	tan nasa	121 (ALIN - 1628)	E A ANERAL ADRA		
	The physical properties of h 05 "Standard Specification	igh-de for Pe	ensity polyethyle obstatione Plast	ne pipe are described u ic Pine and Fittings Ma	using ASTM D 3350-		
	this standard was changed.	The t	wo key areas cha	nged are, density and s	dow crack growth.		
	In the 05 version, the cell c	lassifi	cations for densi	ty were increased from	four cells to seven		
	cells defining the density ra	inges i	for various resins	í.			
	New high performance him	dal n	acine PR 4710 m	cine, have higher PRNT	tost values Slow		
	crack grow properties can a	low be	e defined using e	ight cells.	Cos faides. Silon		
HDDE Dino	1 ED 1 2000 4		21 n d.		2 7 222		
TIDEL Fipe	As of December 2006, most M5464C. The nine is Ishele	HUPE das P	2 pipe is made in R3408/3608. The	om resin with a cell cla physical properties for	PE 345464C are-		
	outores, the pipe is more		Landor Good. The	hidraren hiederaren ser			
	PROPERTY VALUE	8	PECIFICATION	UNIT	NOMINAL VALUE		
	Material Designation		PPI / ASTM		PE3408		
	Material Designation		PPI / ASTM		PE 3408/3608		
	Cell Classification		ASTM D 3350	WSS	345464C		
	Density	(3)	ASTM D 1505	g/cm3	0.941-943		
	Melt Index	(4)	ASTM D 1238	gm/ 10 min	0.0511		
	Flexural Modulus	(5)	ASIM D 790	psi	110,000 to 140,000		
	rensue ou engin	(4)	ADIM D 550	har	3,200		
	Slow Crack Growth			12 10000000 1/3			
	ESCR		ASTM D 1693	hours in 100% igepal	>5,000		
	PENT	(6)	ASTM F 1473	hours	>100		
	HDB @ 73 deg F	(4)	ASTM D 2837	psi	1,600		
	UV Stabilizer	(0)	A018 D 1003		2 80 2.4%		
	The density provided is without carbon	black. T	pical HDPR pipe has a	dennity of 1855 to 1877 with early	er black.		
	Types of Polyethylene Pipe	in the second	The Local Day of the local day	0050.05 Jan density D	D in defined as how		
	ing a density range of 0.919	to 0.9	25 ø/cc: medium	density has a range of	0.926 to 0.940 g/cc		
	and high density is defined	with a	a range from 0.94	1 to 0.955. All densities	s are without car-		
	bon black.						
	Density influences has seen		in exheribelies a	materials do the door	in immediate the		
	tensile strength increases:	also el	hemical resistance	e increases.	ty increases, the		
		000.0					
	Medium density PE resins h	ave b	een used for gas	distribution. This origi	nal selection was		
	made based on superior slo	W CEBI	ck growth proper	ties of medium density	resins. Medium		
	density pipe is designated as PE 2406 and PE 2708.						
	Today new himodal rosins a	re hei	nø used in øas di	stribution because of h	igher pressure rat-		
	ings plus superior slow crac	k grow	wth. These resins	are designated PE 340	8, PE 3608, PE		
7 2 7 2 10 3 4 10 10 10 10 10 10 10 10 10 10 10 10 10	3708, PE 3710 and PE 4710.			ini	10		
1-800-345-ISCO							
www.isco-pipe.com	0	-					
19	© Cameria	bi 2007	7 ISCO Industries I	LC. All Rights Reserved			
15	Contraction of the		and the second second				
			R.S.S.				

Existing spillway preparation:

The existing CMP spillway will be flushed with water and all dirt and debris removed. Spacers will be installed on the new 18 inch HDPE pipe every 10 to 15 feet. Flotation of the liner is a concern when a liner is to be grouted. The spacers will be staggered and spaced out to allow grout to fill the entire annular space around the pipe.

HDPE Joints:

Bander Smith, LLC anticipates joining the new spillway pipe using heat fusion. The primary spillway at Kingspoint dam may only require one joint. The HDPE will be delivered to the site in either 40 or 50 foot sections. Heat fusion (ASTM D 2657) is a widely used and industry-accepted method for joining sections of smooth solid walled HDPE pipe. This method produces a joint that is watertight and is as strong as or stronger than the HDPE pipe material itself. The use of fusion machine operators who are skilled, knowledgeable, and certified by the manufacturer will produce a good quality joint

Heat fusion creates a continuous joint-free pipe of nearly constant outside diameter. Because the HDPE slipliner joint does not take up a large part of the original conduit, a larger inside diameter slipliner can be used.

Bulkhead & Thrust Block:

Bulkheads will be installed on the upstream and downstream side of the outfall pipe. The bulkhead will consist of anti-shrink concrete packed approximately 2 to 3 feet into the annular space between the old and new pipes. Vent ports will be installed on the bottom, middle, and top of the bulkhead to insure a complete grouting has occurred. A 2 inch diameter steel injection port will be installed at the top of the downstream bulkhead. Once all vent ports have passed grout and closed, the grouting operation is complete.

Figure 1 – Typical Grout injection port and vent ports

Grouting:

Careful grouting of the annular space between the existing conduit and the HDPE slipliner is essential. This can be a complex process, requiring the experience of a qualified contractor. The HDPE slipliner is typically designed to withstand all internal and external loadings independently from exterior conditions. A lightweight, low density grout containing no aggregate will ensure the best result. Usually the material used is a Fine grout ("flowable fill") amended with Tetraguard AS20 (anti-shrink) & super plasticizer. Depending on the conditions, additional admixtures may be required to obtain desired performance such as cellular grout.

					115		1		-		
ALLIEDconcre	te compar	ny								the second se	
- management of the	and the second		·			DATE:	1/15/13	-		SPECIFICATION REFERENCE	
MIX DESIGN	BC010					· · · · · ·					
CALCULATION	Non-shrin	ik grout				MIX VER	RIFICATION:	9	Terres a	Specification #	0031 33 73
PROJECT USE	pipe annului	c fill with intraplac	ŧN		22	Mix expe	erience: non	e/ supplier pro	vided mix	-	
	10		0			Mix is in	compliance v	nth ACI 301, Se	ect. 4.2.3.3c, Hequired	28 daystrength:	
PROJECT	Ragge	d Mountair	n Dam			average	Compressive	strength" when	using Sect 4.2.3.4b	1-entrained air content:	no added air
CONTRACTOR	Thalle					"Trial Mo	xtures" to esta	ablish mixture p	roportions.(ACI 211.1)	2-water/cement ratio:	≤0.50
				5%		l i				3-Minimum cement content:	
MATERIAL	AMOUNT	DIVISOR	ABS VOL	TR.BTCH	MATERIAL		SUPPLIER/	SPEC.	and the second s	4-Pozzolan/% of total cem.;	<33%
CEMENT(type I/II)	500	196.6	2.54	25	CEMENT	LEHIG	H/UNION BR	IDGE, MD/AST	TM C150	5-Slump: (before/after HRWR):	-
KOMPONENT (type K)	250	196.6	0.00	0	TYPEK	CISCE	MEN1/Type P	Cypress, Call		before	<6
ENT AID	200	101.0	1.63	13	HD AC90	METD	DIDDEIAST	ARE, VA/ C01	<u>e</u>	E coopial additions:	
C ACC (#P)	3.00%	178.0	0.00		C ACC(57)	MADT	NMADIETT	VPED LILL VA	ASTN C22	add Intraplact N at eiter 7.5#	ll Ivard
E AGG (#2)	0	180.7	0.00	0	E AGG(#1)	AVIET	TERGAV	ETT VA/ACT	1.022	add intraplast if at site, 1.5+	l
WATER(GAL)	41 25	108.7	5.51	2	CITY	POTA	RIF	EII, VAASII	1 633		H
WATER(LBS)	343 6125	-	0.01	-	F AGG(#2)	VULCA	AN/ "A"SAND	STAUNTON V	A/ASTM C33	Mix design logic/back-up	supplier provided mix
MOR FRAC.	27.00	TOTAL	10.51	-	MFG.SAND	MART	IN MARIETTA	VCVILLE		1-curve:	no
-	6 3			2 8	LTWTA	SOLITI	E/CASCADE	PLANT/ASTM	C330	2-experience(30 breaks)	no
		REMAINING						1			П
W.C. RATIO	0.46	VOLUME	16.49	2					3	3-special:	
(specification:	<0.5					ACI Tab	le 4.2.1-Expo	sure categorie	es and classes		1
	100				8	FU	0 no expo	sure			1
FINE AGG.(#1)	2696	163.5	16.49	135			12	8			
	2696	- Alberg	16.49		5	1	§				
	E			-		SPE	ECIFIC GRAV	/ITY INFO 1/12		REVIEW COMMENTS:	
	3 <u>5</u> 8	TOTAL FOR	07.00		STONE	2.8	2 34" NOMINA	VL)			
-	6 6	SAND PLUG	27.00	1	SAND/#2	1 27	2 (F.M. =2.8)	1	-		1
-	12 (A	OVERAIND	0.00		STAL ITE	1.5	1	1			1
	8 6				8PGRVL	2.6	2				
TOTAL WT/YD	3790			189		ABSO	ORPTION			NOTES:	11
anna ann a' ann a'	S. 15. 8				STONE*	0.50%	% (8p & #57)				
UNIT WEIGHT	140.35	(@3% air)			SAND*	0.49	<u>%</u>				
					STALITE	8.05	%				
	#/cu ft.	air			"stone &	sand mee	ASTM C33				
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			-		DESIGN	SI IIMP - A	6-			
	1			-		DESIGN	SLUMP - 4		i		п
	13 S			1	1		1	-			
	0					F.ASH/C	EM :				
-						33%	12				5
ADMIXTURES	oz/100	total oz/yard									W
AIR ENTR.	0	0.00		0	AIR-EN	T/MB-AE	90/BASF/AS	TM C 260			
LRWR(322n)	0	0.00		0	LRWR	POZZILI	ELASTA C	HASTM C 494			
DETADOCO	0	0.00		0	AUU/N	C 334/6A	DACE ACTA	C 404			
HRWR/PLAST)	0	0.00		0	HRWP	GI ENILI	M 7500/BASE	ASTM C 404			
FIBER(Micro)	0	0.00			Master	Fiber F70	BASE/ASTM	C 1116		RAMAR	
FIBER(Macro)	0	0			Master	Fiber MAG	C100/BASE/A	STM C 1118	C		TISAA
INTEGRAL WATERPRF	0	0.00			RHEO	MAC 3000	D/BASF/Modi	fied DIN 1048/A	STM 1585	Sen Bar	5 5 5 60.
SHRINKAGE COMP.	1%	7.5#/yd			S.I.K.A	Corplint	raplast N/Ne	w Jersey			
CORROSION INHIB	0	0.00			RHEO	CRETE C	NI/BASF/C49	4 type S		1000 Harris Street	
INTEGRAL COLOR	0	0.00		_	RHEO	COLOR L	BASF/ASTM	C 979		Charlottesville, Virginia 22903	
	1 N					-				(pn)434-296-7181	
	1. S			-						www.alliedconcrete.com	
						1				www.atticuconorete.com	11

Intraplast-N[®]

Expanding / Fluidifying Grouting Aid

Description	Intraplast-N is a balance for portland-cement gro hardening.	ed blend of expanding, fluidifying, and water-reducing agents uts. It produces a slow, controlled expansion prior to the grout
Applications	 Machinery base plane 	lates.
	Pre-packed aggre	gate cavities.
	 Rock fissures and 	bolting.
Benefits	 High fluidity - Intrap cohesive. 	plast-N grout is extremely fluid, workable, non-settling, and
	 Versatile - use Intra cement, with or wit aggregate. 	aplast-N with all types of grout incorporating Type I, II, or III hout pozzolanic materials or fly ash, and with or without fine
	 Controlled, gaseou close contact with 	is expansion occurs before initial set and forces the grout into the surrounding surfaces.
Packaging	50 lb. multi-wall bag.	
	Typical Data Materia RESULTS MAY DIFFER BASED UPC	al and curing conditions @ 73°F (23°C) and 50% R.H.
	TEMPERATURE, APPLICATION ME	THODS, TEST METHODS, ACTUAL SITE CONDITIONS AND CURING CONDITIONS.
	Storage Conditions	o montris in original, unopened bags. Store dov at 40.05°E
	Color	Gray powder
	Dosage	Add 1% by weight of cementitious material, (portland- cement and, if used, fly ash)
How to Use		
Forming	Where areas to be grou using Intraplast-N grout duce the highest possibl there are open areas. U physical characteristics.	ted require forming, forms should be tight and well fitted. Wher , expansion of the grout should be restrained in order to pro- e density, bond, and strength. Top forms should be used where nformed, exposed grout placements will have substantially lower
Mixing	 Water should be a admixture, and sa 	dded to the mixer first, followed by portland-cement, fly ash, nd as required.
	 b) Mixing should be o grout, without excert 	f such duration as to obtain a uniform, thoroughly blended essive temperature increase.
	c) No water should be lost by delayed use	e added to the grout to increase any flowability which has been e of grout.
	 d) It is essential that t water content shou material. 	he water content of the grout be kept as low as possible. The Id generally be less than 5.25 gal./100 lb. of cementitious
ka		

	Size of Openings							
	Product	1/4 in. or	less	Larger t	han 1/4 in.			
	Cement ¹	2 parts	1 part	2 parts	1 part			
	Fly Ash ²	1 part	none	1 part	none			
	Sand ³	none	none	3 parts	1 part			
	Water ⁴	4-5	4-5	41/2-51/2	41/2-51/2			
	Intraplast-N⁵	1%	1%	1%	1%			
	¹ ASTM C-150; ² ASTM C ⁴ Gallons per 100 lb. cem	-350; ³ 100% passin entitious material; ⁵	g an 8-mesł By weight of	n sieve; cementitious	s material.			
	Water requirements will t	typically be lower that	an that of a r	on-Intraplast	-N mix of equ			
Application	All pumps and hose fitti and subsequent cloggin can be completed withir occurs after the grout is	ngs should be abs g. Be sure your b n one hour so that placed.	olutely wai atches are as much o	ertight to pr so limited i f the expan	revent loss o n size that p ding action a			
Typical mix designs	The following typical mix designs serve only as a basis for trial mixes. Actual mix design must be tested prior to use. Proportions are by weight, unless noted.							
Limitations	 Design mixes should always be tested to verify satisfactory performance, spe cally as it relates to strength, bleed, flow and segregation. The use of this adn ture will alter physical properties. 							
	 Not recommended 	as a non-shrink a	dmixture fo	or conventio	nally placed			
Caution								
Irritant	Skin and eye irritant. An breathing dust. Use onl cal resistant gloves is re fitted NIOSH approved i	void contact. Dus ly with adequate v ecommended. If P respirator is requi	t may caus entilation. ELs are ex red. Remo	e respirator Use of safet ceeded, an ve contamir	y tract irritati ty goggles ar appropriate, nated clothin			
First Aid	In case of skin contact, immediately with plenty respiratory problems, re	wash thoroughly v of water for at lea move person to fr	vith soap a st 15 minu esh air.	nd water. Fo tes, and cor	or eye conta ntact a physi			
	In case of spillage	op or vacuum into	appropriat	e container,	, and dispos			

Maintenance:
No maintenance is typically required for the HDPE sliplined conduit, unless the conduit requires some type of cleaning. Periodic operation of the conduit usually is sufficient to flush sediments through the system. HDPE pipe is smooth and generally resists the adherence of sediment deposits.

Task No. 5 – Restore Embankment

The new liner will need a pipe cradle installed along its path to the plunge pool. It is recommended to install a filter drain around the outfall pipe as well. This would be fairly easy to complete since the downstream embankment is already open. The filter drain would consists of a combination of a sand and stone filter media with geotextile and 4 inch PVC pipe to collect the water.

Bander Smith, LLC will backfill and compact around the new outfall pipe to match the existing grade.

Several tree roots were noted in the geotechnical report. The root balls will be removed, backfilled, and compacted.

Task No. 6 - Demobilization, Clean-up

All denuded areas will be repaired, seeded, and straw placed. Once all vegetation is established, we will remove any E&S that is in place. All equipment will be removed and the access road returned to near pre-existing conditions.

Project Schedule & Submittals

Below is a general work schedule for the project

- 1. Bander Smith, LLC Pipe Inspection
- 2. Engineer Evaluation and Design
- 3. Owner Approval
 - a. Financing Established
 - b. Proposal Review and Approval
- 4. Contract Executed
- 5. Notice to Proceed Issued
- 6. Material Procurement
- 7. Construction

We respectively request the contract time be at least 60 days from the Notice to Proceed. We anticipate approximately 4 weeks of material procurement and fabrication. Installation on site should take an estimated 20 days with the majority of the work/disturbance occurring over 15 days.

This type of work, especially when working in a live watercourse, is heavily weather dependent.

Shop drawings will be submitted for each major item and owner approved before installation.

Statement of Qualifications

Company Background

Bander Smith, LLC was formed in 2009 to address the ageing dam infrastructure in Virginia and the surrounding states. Dams have unique challenges and Bander Smith meets them with an in-depth knowledge of the techniques, laws, regulations, and safety concerns related to work on impounding structures.

Our team has over 15 years of experience in the dam repair industry. Bander Smith, LLC is owned & operated by Cameron Smith and Austen Bander. We are located centrally in the Commonwealth of Virginia with our main office in Richmond, VA.

***Dams introduce variables to ordinary construction activities and the dynamics of a dam must be understood before safe, proper repairs are made.

Licensing & Insurance

We are a licensed Class A Contractor in Virginia (License No. 2705129060). We are also a DMBE certified SWAM vendor. License Number 679769.

We have commercial general liability insurance that specifically includes coverage for projects on dams, which, unfortunately, many firms working on dams do not have. This is very important for the client who is ultimately responsible if the contractor is under insured.

1 COR					BANDE-1	1	OP ID: CW
CERTI	FIC	ATE OF LIA	BILITY IN	ISURA	NCE	DATE	(MM/0D/1111)
	TTEP	OF INFORMATION ONLY	AND CONFERE		UDON THE CERTIFICAT		IDER THIS
CERTIFICATE DOES NOT AFFIRMATIVE	LY OF	R NEGATIVELY AMEND.	EXTEND OR AL	TER THE CO	VERAGE AFFORDED E	BY TH	E POLICIES
BELOW. THIS CERTIFICATE OF INSUF	RANCE	DOES NOT CONSTITU	TE A CONTRACT	BETWEEN	THE ISSUING INSURER	(S). A	UTHORIZED
REPRESENTATIVE OR PRODUCER, AND	THE C	ERTIFICATE HOLDER.				1-1-	
IMPORTANT: If the certificate holder is the terms and conditions of the policy, ce certificate holder in lieu of such endorser	an ADC ertain p	DITIONAL INSURED, the policies may require an e	policy(les) must t ndorsement. A st	e endorsed. stement on th	If SUBROGATION IS W is certificate does not o	VAIVED), subject to rights to the
RODUCER	ine ine joy	Phone: 804-794-8000	CONTACT				
remier Insurance Agency Ltd	T PHONE FAX						
13321-I Midlothian Turnpike Midlothian, VA 23113 Premier Insurance Agency, Ltd			E-MAL APPLIER				
			NUMERO:				NAME
	Genini Insurance Company				1015-9		
Bander-Smith LLC	AmGuard Insurance Company						
Austen Bander	HISTORICE & Harlow	cville Incur	ance Company	-	23582		
PO Box 7188			insularce company				20002
Richmond, VA 23221	INSURER D :						
			INSURER E :				
0.000	INSURER F:				L		
THIS IS TO CERTIFY THAT THE POLICIES OF	FICATE	ENUMBER:	UE BEEN ION IED T	THE BOUCH	REVISION NUMBER:	UE DO	INV DEDIOD
INDICATED. NOTWITHAT THE POLICIES OF INDICATED. NOTWITHAT ANDING ANY REQU CERTIFICATE MAY BE ISSUED OR MAY PER- EVOLUCIONS AND CONDITIONS OF SUCH PER	RTAN,	THE INSURANCE AFFORD	OF ANY CONTRAC	T OR OTHER	DOCUMENT WITH RESPE	CT TO	WHICH THIS THE TERMS,
	OLI SUBR		POLICY EFF	POLICY EXP	1947		
GENERAL LIABILITY	SR WYD	POLICY NUMBER	MINCONYYY	(MINIDOTTYY)	EACH DOCUMENTON		1 000 00
X	3	VICP014917	07/28/2014	07/28/2019	DAMADE TO RENTED		1,000,00
COMMERCIAL GENERAL DABLITY	- 8	10-014017	0112012012	0112012013	PILEMISES (En posumence)	\$	50,0
CLAIMS-MADE A OCCUR					MED EXP (Any one perion)	5	3,01
					PERSONAL & ADV INJURY	1	1,000,0
					GENERAL AGGREGATE	5	2,000,0
GEN'S AGGREGATE LIMIT APPLIES PER-					PRODUCTS - COMPVOP AGG	1	2,000,0
X POLICY JECT LOC						5	
AUTOMOBILE LIABILITY	- 30 - 3		23 - 13 24		(DASINED SNOLE LIMIT (Da socident)	5	1,000,00
ANY AUTO	BA00000072471H		10/11/2012	10/11/2013	BOOLY INJURY (Per perion)	\$	
ALL OWNED X SCHEDULED AUTOS X AUTOS		- 14 C			BODILY INJURY (Per accident)	5	
HIRED AUTOS AUTOS					PROPERTY DAMAGE (Per soddert)	8	
					5	\$	
UNBRELLA LIAB OCCUR	76.2	-	S		EACH OCCURRENCE	5	
EXCESS LIAB CLAINS-MADE					AGGREGATE	5	
DED RETENTIONS	98. 3			4	presses and the	5	
WORKERS COMPENSATION				-	X WESTATUL OTH-		
AND EMPLOYERS' LIABILITY	19642 A. S.	R2WC361064	10/17/2012	10/17/2013	EL FACH ACCIDENT		100.00
OFFICERMEMBER EXCLUDED? N/	A		10000000	10042000046	FI DREASE - DA DAIL OVER		100.0
If yes, describe under				3	EL DERES DE MENOVEL		500.0
DESCRIPTION OF OPERATIONS BROW			-	÷	EL DISEASE - PODEY LIMIT	1	000,0
INCONTION OF OPERATIONS (LOPATIONS (MILLION)	(All and	ACORD MIL Address Description	Rebecksle, Kommune	a finite law fi	5		
idison Evans Water Treatment P	lan	Chesterfield Com	tv. VA	- indening)			
ERTIFICATE HOLDER		8	CANCELLATION	2			
	SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.						
0							
Sample minimum							
TOTO TOTO TOTO TOTO TOTO TOTO TOTO TOT							
			Premier Insura	nce Agency	, Ltd		
65				8 N			
100			1				

Bander Smith, LLC - Team Personnel

Key personnel for Bander Smith, LLC that will be on site for the inspection

Cameron J. Smith - Project Manager

Cameron Smith is a founding partner of Bander Smith, LLC and Project Manager. Mr. Smith graduated from Virginia Tech in 2004 with a degree in building construction and a minor in Real Estate. Prior to the formation of Bander Smith, LLC, Cameron Smith had over 8 years experience in the dam repair and inspection industry, working his way up to Project Manager and Vice President before pursing his own firm.

He has completed over 200 dam repair and inspection projects across the eastern half of the United States. He holds a current VA contractor's license as well as a private pilot license. He is also trained and certified in confined space entry.

Austen C. Bander – Project Superintendent

Austen Bander is a founding partner of Bander Smith, LLC and Project Superintendent. Mr. Bander graduated from Randolph-Macon College in 2004 with a degree in Physics and a minor in Astrophysics and Spanish. Prior to the formation of Bander Smith, Austen Bander had 6 years of experience in the dam repair and inspection industry.

Mr. Bander is currently designated an Engineer-in-Training in Virginia and actively pursuing a Professional Engineer's License.

Paul L. Wood - Project Superintendent & Lead Diver

Mr. Wood has over twenty five years of diving inspection and construction experience. During his 10 year career in the U.S. Navy, Mr. Wood conducted over 1,000 dives. After being honorably discharged from the Navy, Mr. Wood was employed by various commercial dive contractors, prior to starting his own company to provide diving inspection and related work. Mr. Wood is experienced in all aspects of diving operations, including air diving, mixed gas diving, SCUBA, surface air supplied and hyperbaric chamber operations. Mr. Wood has performed underwater inspections on all types of construction including wood, steel and concrete for bridges, piers, bulkheads, and wharfs. Mr. Wood is experienced in dealing with hazardous conditions including low visibility, confined space, high current, low temperature, and altitude diving.

Education & Certification:

- Association of Diving Contractors Surface Air Diving Supervisor (#8112)
- National Highway Institute Safety Inspection of In-Service Bridges (#13055) / 2004
- Int'L Association of Nitrox & Technical Diving (2001)
- Advance Rescue Diver (1996)
- Dive Control Specialist (1990)
- o U.S. Navy 2nd Class Dive School / 1989 / Honor Graduate
- o U.S. Navy Explosive Ordinance Disposal School / 1985 / Honor Graduate
- o U.S. Navy SCUBA Dive School / 1984