

CERTIFICATE OF AUTHENTICITY

THIS IS TO CERTIFY THAT THE FOLLOWING ELECTRONIC RECORDS ARE TRUE AND ACCURATE REPRODUCTIONS OF THE ORIGINAL RECORDS OF JAMES CITY COUNTY GENERAL SERVICES DEPARTMENT- STORMWATER DIVISION; WERE SCANNED IN THE REGULAR COURSE OF BUSINESS PURSUANT TO GUIDELINES ESTABLISHED BY THE LIBRARY OF VIRGINIA AND ARCHIVES; AND HAVE BEEN VERIFIED IN THE CUSTODY OF THE INDIVIDUAL LISTED BELOW.

BMP NUMBER: CC015

DATE VERIFIED: November 15, 2017

QUALITY ASSURANCE TECHNICIAN:

Jonathan Craig

LOCATION: WILLIAMSBURG, VIRGINIA

Stormwater Division

MEMORANDUM

DATE: November 15, 2017

SCANNER: Jonathan Craig, Assistant Environment Coordinator

RE: Files Approved for Scanning

Maintenance Agreements: YES (*in file as of scan date*)

General File ID or	r BMP ID: CC015
PIN: 5130100003	
Owner Name:	ANHEUSER BUSCH BREWING PROPERTIES LL ATTN: GENERAL COUNSEL
Legal Description:	PARCEL D-2 25 888 AC; BUSCH CORPORATE CENTER
Local Address:	7795 POCAHONTAS TRAIL

Easement:

Recorded Plat:

Comments: Scanned and added 1 addendum to record drawing. Hard copy destroyed. Added notarized copy of maintenance agreement 000001502 from courthouse records.

CERTIFICATE OF AUTHENTICITY

THIS IS TO CERTIFY THAT THE FOLLOWING ELECTRONIC RECORDS ARE TRUE AND ACCURATE REPRODUCTIONS OF THE ORIGINAL RECORDS OF JAMES CITY COUNTY GENERAL SERVICES DEPARTMENT- STORMWATER DIVISION; WERE SCANNED IN THE REGULAR COURSE OF BUSINESS PURSUANT TO GUIDELINES ESTABLISHED BY THE LIBRARY OF VIRGINIA AND ARCHIVES; AND HAVE BEEN VERIFIED IN THE CUSTODY OF THE INDIVIDUAL LISTED BELOW.

BMP NUMBER:CC-015

DATE VERIFIED: March 15, 2012

QUALITY ASSURANCE TECHNICIAN:

Leah Hardenbergh each Hardenbuch

LOCATION: WILLIAMSBURG, VIRGINIA

Stormwater Division

MEMORANDUM

DATE:	March 11, 2010
TO:	Michael J. Gillis, Virginia Correctional Enterprises Document Management Services
FROM:	Tina Cantwell, Stormwater
PO:	270712
RE:	Files Approved for Scanning

General File ID or BMP ID: CC015

PIN: 5130100003

Subdivision, Trac	t, Bu	siness	s or Owner				
Name (if known):				Anheuse	r Busch		
Property Description:			Brew Sit	te Pt Par 3			
Site Address:		~		7795 Po	cahontas Trail		
(For internal use only)	Box	11		Drawer:	6		
Agreements: (in file as of scan date)	Y		Book or Doc#:		27	Page:	59
					000001502		

Comments

1. Maintenance Agreement

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 5 of 158

000 001502

DECLARATION OF COVENANTS

INSPECTION/MAINTENANCE OF DRAINAGE SYSTEM

	0000
between Anheuser-Busch, Inc., and all successors in interest, hereinafter referred i	to as the
"COVENANTOR(S)," owner(s) of the following property: <u>Anheuser-Busch</u> Brewery Williams burg 2 Virginia	
June 197 Deed Book 37, Page No. 59 or Instrum	ent No.

_____, and James City County, Virginia, hereinafter referred to as the "COUNTY."

WITNESSETH:

We, the COVENANTOR(S), with full authority to execute deeds, mortgages, other covenants, and all rights, titles and interests in the property described above, do hereby covenant with the COUNTY as follows:

1. The COVENANTOR(S) shall provide maintenance for the drainage system including any runoff control facilities, conveyance systems and associated easements, hereinafter referred to as the "SYSTEM," located on and serving the above-described property to ensure that the SYSTEM is and remains in proper working condition in accordance with approved design standards, and with the law and applicable executive regulations. The SYSTEM shall not include any elements located within any Virginia Department of Transportation rights-of-way.

2. If necessary, the COVENANTOR(S) shall levy regular or special assessments against all present or subsequent owners of property served by the SYSTEM to ensure that the SYSTEM is properly maintained.

3. The COVENANTOR(S) shall provide and maintain perpetual access from public right-of-ways to the SYSTEM for the COUNTY, its agent and its contractor.

4. The COVENANTOR(S) shall grant the COUNTY, its agent and its contractor a right of entry to the SYSTEM for the purpose of inspecting, operating, installing, constructing, reconstructing, maintaining or repairing the SYSTEM.

5. If, after reasonable notice by the COUNTY, the COVENANTOR(S) shall fail to maintain the SYSTEM in accordance with the approved design standards and with the law and applicable executive regulations, the COUNTY may perform all necessary repair or maintenance work, and the COUNTY may assess the COVENANTOR(S) and/or all property served by the SYSTEM for the cost of the work and any applicable penalties.

6. The COVENANTOR(S) shall indemnify and save the COUNTY harmless from any and all claims for damages to persons or property arising from the installation, construction, maintenance, repair, operation or use of the SYSTEM.

7. The COVENANTOR(s) shall promptly notify the COUNTY when the COVENANTOR(S) legally transfers any of the COVENANTOR(S)' responsibilities for the SYSTEM. The COVENANTOR(S)' shall supply the COUNTY with a copy of any document of transfer, executed by both parties.

8. The covenants contained herein shall run with the land and shall bind the COVENANTOR(S) and the COVENANTOR(S)' heirs, executors, administrators, successors and assignees, and shall bind all present and subsequent owners of property served by the SYSTEM.

9. This COVENANT shall be recorded in the County Land Records.

IN WITNESS WHEREOF, the COVENANTOR(S) have executed this DECLARATION OF COVENANTS as of this _____ day of _______, 19,200

COVENANTOR(8) Kirk

ATTEST:

COVENANTOR(S)

ATTEST:

COMMONWEALTH OF VIRGINIA CITY/COUNTY OF _______ County

I hereby certify that on this <u>IHA</u> day of <u>January</u>, <u>19</u>, before the subscribed, a Notary Public of the State of Virginia, and for the County of <u>Jone</u>, aforesaid personally appeared <u>before me</u> Kirk Reno <u>Au</u> and did acknowledge the aforegoing instrument to be their Act.

IN WITNESS WHEREOF, I have hereunto set my hand and official seal this <u>11th</u> day of <u>January</u>, <u>19,2000</u>.

My Commission Expires April 30, 2002

Notary Public

My Commission expires:

് Sworn to and subscribed before methis day of thouan 20 Witness my hand and official seal: 10- C. Proven Notary Public

LY is

Approved as to form:

1 (040)

VIRGINIA: City of Williamsburg and County of James City, to-wit:

This Cerenaris	was
presented with certificate ann	exed and admitted
	L_{\perp} $L_{\rm U}//U_{\perp}$
- O'Clin AM/DH in the	Clefk's Office of the
Circuit Court of the City of Wil	liamsburg and County
Circuit Codit of the city of the	•
of James City. TESTE: BETSY B, WOOLRIDGE	CLERK
	~
(Onto holy in	Qe Deputy Clerk
BY: DIANA DUCC	Yest and the second sec
U	U

This Declaration of Covenants prepared by:

Lee H am (Print Name) Title) e Avenue Address) DaeRSONVI (City) (State)

drainage.pre Revised 2/97

2. Completed Construction Certification

James City County, Virginia Environmental Division

Stormwater Management / BMP Facilities Record Drawing and Construction Certification Forms

(Note: In accordance with the requirements of the Chesapeake Bay Preservation Ordinance, Chapter 23, Section 23-10(4), BMP's shall be designed and constructed in accordance with the manual entitled James City County Guidelines for Design and Construction of Stormwater Management BMP's. Erosion and sediment control policy and approved plans generally require that at the completion of the project and prior to release of surety, an "as-built" plan prepared by a registered Professional Engineer or Certified Land Surveyor must be provided for the drainage system for the project, including any Best Management Practice (BMP) facilities. In addition, for BMP facilities involving the construction of an impounding structure or dam embankment, certification is required by a Professional Engineer who has inspected the structure during its construction. Currently there are over 20 water quality type BMP's accepted by the County.)

Section 1 - Site	Information:			
۹. ۱			Anheuser- Busch, Inc.	
Project Name: Transportation Advantage, Williamsburg Brewer				
Structure/BMP Name: POND No. 1 and POND No. 2				
Project Location	: _78	301 Poco	ahohtas Trail	
BMP Location:	//	LEST AR	FA OF PLANT SITE	
County Plan No.	: <u>_Si</u>	<u>- 13</u>		
			(50-2)(01-78)	
Project Type:	🗇 Residential	Business	Tax Map/Parcel No.: $(51-3)(01-01)$ and $(51-3)(01-3)$ BMP ID Code (if known): $CC 015 = CC 016$	
	Commercial			
	Institutional	🖸 Industrial	Zoning District:: M-2, Gen. Industrial	
	🗆 Public	🗇 Roadway	Land Use: <u>Plant</u> , Industrial	
	Other		Site Area (sf or acres): <u>23,18 acres</u>	
		Management/BM		
ponds	serving		e collection systems. Pond	
- syster			to provide for water quality	
		on of f		
_with:	sediment	Forebays	<u>.</u>	
		~		
Nearest Visible I	andmark to SW.	M/BMP Facility:	A-B Scale House	
NT	a	· · • • •	· · ·	
Nearest Vertical		• •		
	Geodetic Ground		GS 🛛 Temporary 🖓 Arbitrary 🖾 Other	
	Number or Name			
	or Reference Ele		C.C.	
	Description: $\underline{}$		SURVEY CONTROL POINTS	
Control			IN PARKNG LOT BETWEEN	
		PONO #1	É POND #2	

Section 2 - Stormwater Management / BMP Facility Construction Information:

PreConstruction Meeting Held for Construction of SWM/BMP Facility:	les 🛛 No	🗇 Unknown
Approx. Construction Start Date for SWM/BMP Facility: <u>Z-7-00</u>	/	
	(es 🛛 No	U Unknown
Name of Site Work Contractor Who Constructed Facility: Branscome	. The	·.
Name of Professional Firm Who Routinely Monitored Construction: Michael	H. Wh	
Date of Completion for SWM/BMP Facility: December 28, 200	0/Janu	ary 31, 2001
Date of Record Drawing/Construction Certification Submittal: February	14, 200	

(Note: Record Drawing and Construction Certifications are required within thirty (30) days of the completion of Stormwater Management and/or BMP facility construction. Record Drawings and Construction Certifications must be reviewed and approved by the James City County Environmental Division prior to final inspection, acceptance and bond or surety release.)

Section 3 - Owner / Designer / Contractor Information:

Owner/Developer:

(Note: Site Owner or Applicant responsible for development of the project.)

Name: Anheuser - Bu:	sch. Inc.
Mailing Address: 7801 Pocaho	ntas Trail
Williamsburg	VA Z3187
Business Phone: (757) 253-3868	Fax: (757) 253 - 2125
Contact Person: Kirk Reno	Title: Project Manager

Design Professional:

(Note: Professional Engineer or Certified Land Surveyor responsible for the design and preparation of plans and specifications for the Stormwater Management / BMP facility.)

Firm Name:	he Haskell Company	
Mailing Address:		
	Jacksonxille, FL 32202	
	904) 791-4577	
Fax:	904 791-4697	
Responsible Plan Pr	reparer: Michael H. Wheeler, PE	
Title:	Civil Engineer	
Plan Name: Tr	ansportation Advantage - WMB	Brewery
Firm's Project No.	32193	7
Plan Date:	4-10-00	
Sheet No.'s Applica	ble to SWM/BMP Facility: 206/ 207 / 215 /	1

BMP Contractor:

(Note: Site Work Contractor directly responsible for construction of the Stormwater Management / BMP facility.)

Name: Henry S. Branscome, Inc.
Name: <u>Henry S. Branscome, Thc.</u> Mailing Address: <u>PO Drawer 260</u>
Williamsburg, VA 23187
Business Phone: (757) 377-1885
Fax: (757) 220-0390
Contact Person: ED SMITH
Site Foreman/Supervisor: DAVID BATHUBST
Specialty Subcontractors & Purpose (for BMP Construction Only):

Section 4 - Professional Certifications:

Certifying Professionals: (Note: A Registered Professional Engineer or Certified Land Surveyor is responsible for preparation of a Record Drawing, sometimes referred to as an As-Built plan, for the drainage system for the project including any Stormwater Management/BMP Facilities. A Registered Professional Engineer is responsible for the inspection, monitoring and certification of Stormwater Management / BMP facilities during its construction.)

Record Drawing and Construction Certifications for Stormwater Management / BMP Facilities

Record Drawing Certification
Firm Name: The Haskell Company Mailing Address: III Biverside Avenue Jacksonville, FL 32202
Business Phone: (904) 791-4577
Fax: (904) 791-4697
Name: Michael H. Wheeler, PE Title: <u>CIVIL</u> ENGINEER
Signature:

I hereby certify to the best of my judgement, knowledge and belief that this record drawing represents the actual condition of the Stormwater Management / BMP facility. The facility appears to conform with the provisions of the approved design plan, specifications and stormwater management plan, except as specifically noted.

Construction Certification

Firm Name: The Haskell (ompany
Mailing Address: III Riverside Avenue
Jacksonville, FL 32202
Business Phone: (904) 791-4577
Fax: (904) 791-4697
Name: Michael H. Wheeler, PE
Title: CIVIL ENGINEER
Signature: Minhalt Whily
Date: 2-14-01

I hereby certify to the best of my judgement, knowledge and belief that this Stormwater Management / BMP facility was monitored and constructed in accordance with the provisions of the approved design plan, specifications and stormwater management plan, except as specifically noted.

Virginia Registered Professional Engineer or Certified Land Surveyor

Mutul Hullend

(Seal)

Virginia Registered **Professional Engineer**

(Seal)

Section 4 - Professional Certifications:

Certifying Professionals: (Note: A Registered Professional Engineer or Certified Land Surveyor is responsible for preparation of a Record Drawing, sometimes referred to as an As-Built plan, for the drainage system for the project including any Stormwater Management/BMP Facilities. A Registered Professional Engineer is responsible for the inspection, monitoring and certification of Stormwater Management / BMP facilities during its construction.)

Record Drawing and Construction Certifications for Stormwater Management / BMP Facilities

Record Drawing Certification

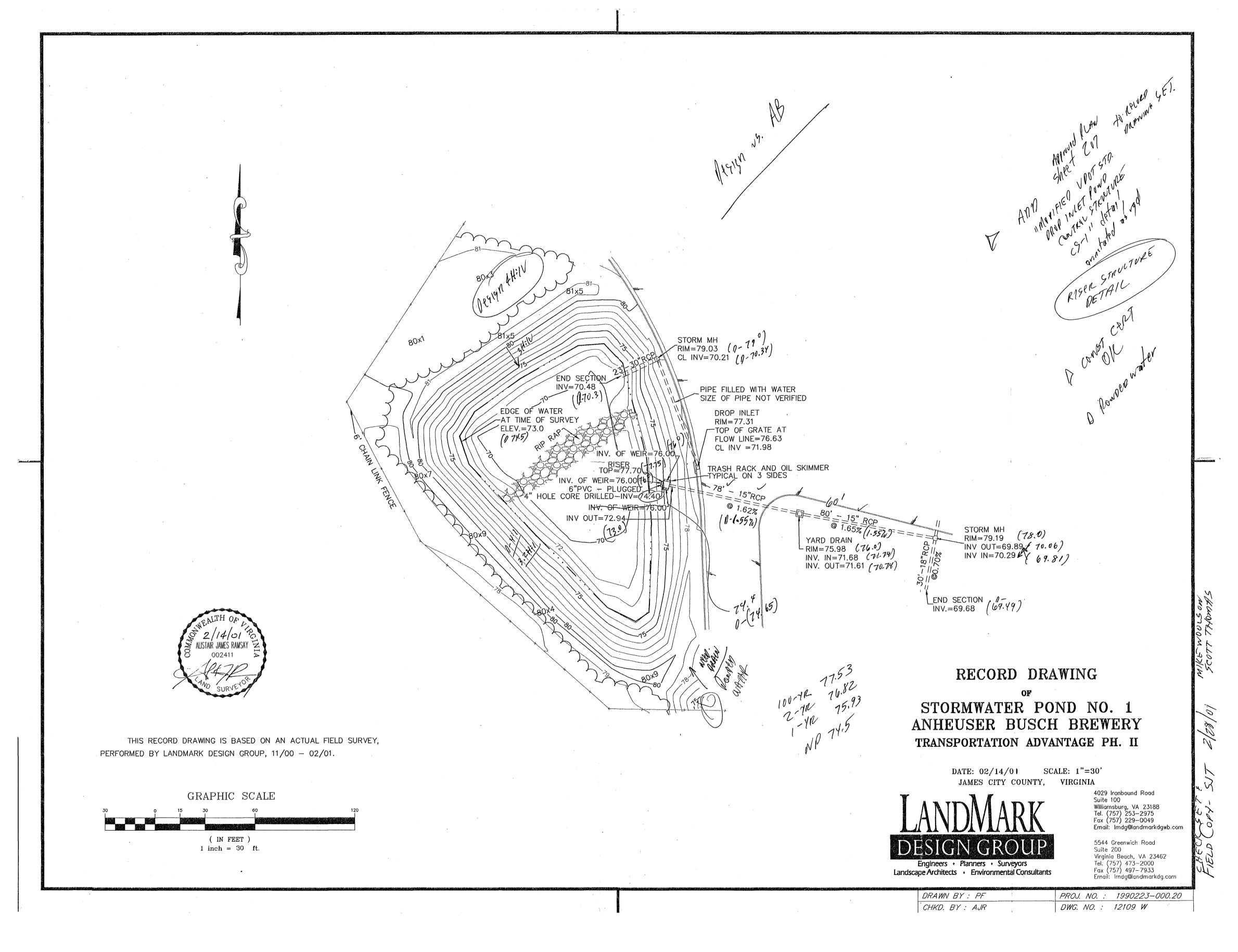
Firm Nan	e: <u>The Haskell Company</u>
	ddress: 111 Riverside Ave.
	Jacksonville, FL 32202
Business .	Phone: (904) 791-4577
Fax:	(904) 791-4697
Name: Title:	Michael H. Wheeler, P.E. Civil Engineer
Signature Date:	Muhantthelluly 3-13-co

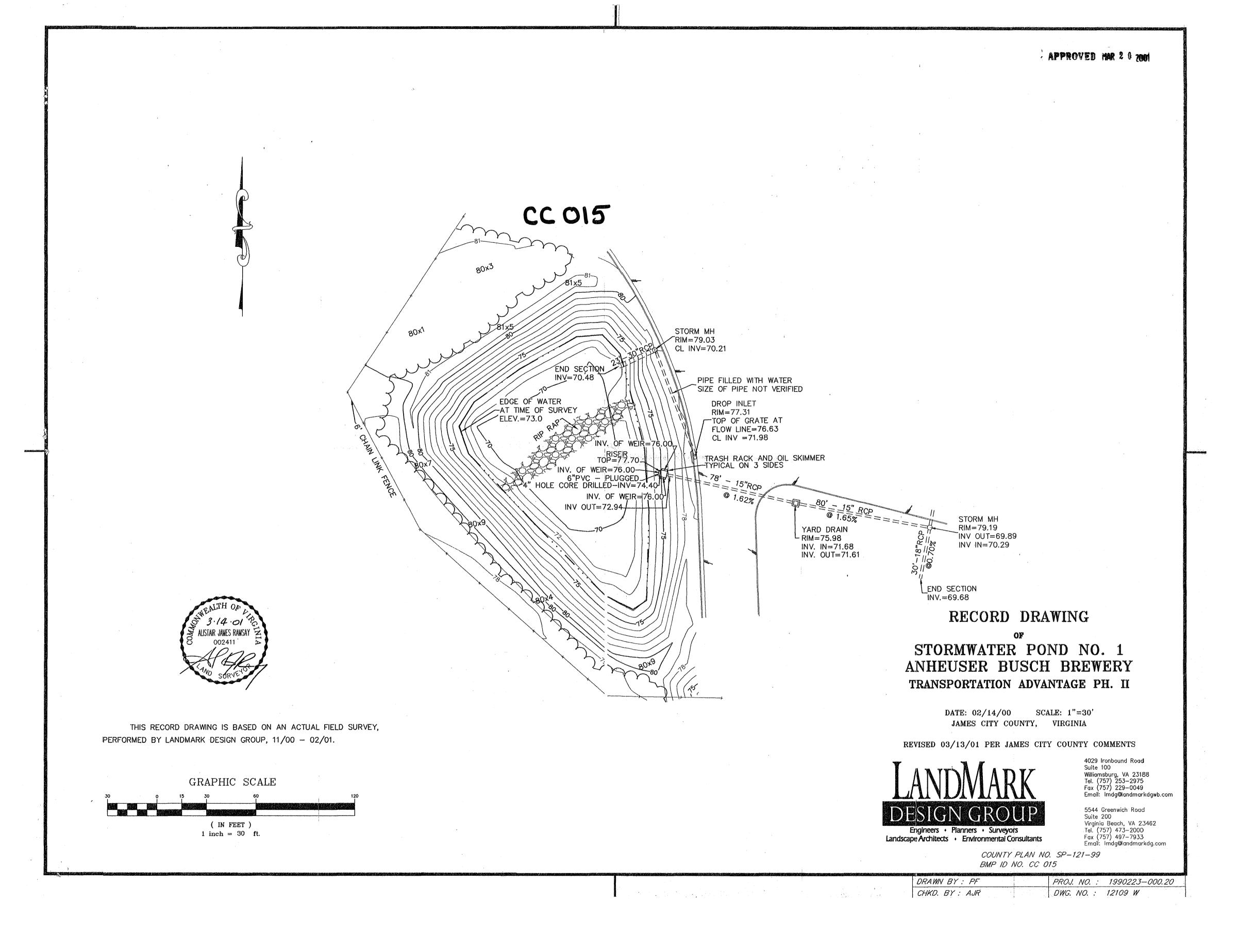
I hereby certify to the best of my judgement, knowledge and belief that this record drawing represents the actual condition of the Stormwater Management / BMP facility. The facility appears to conform with the provisions of the approved design plan, specifications and stormwater management plan, except as specifically noted.

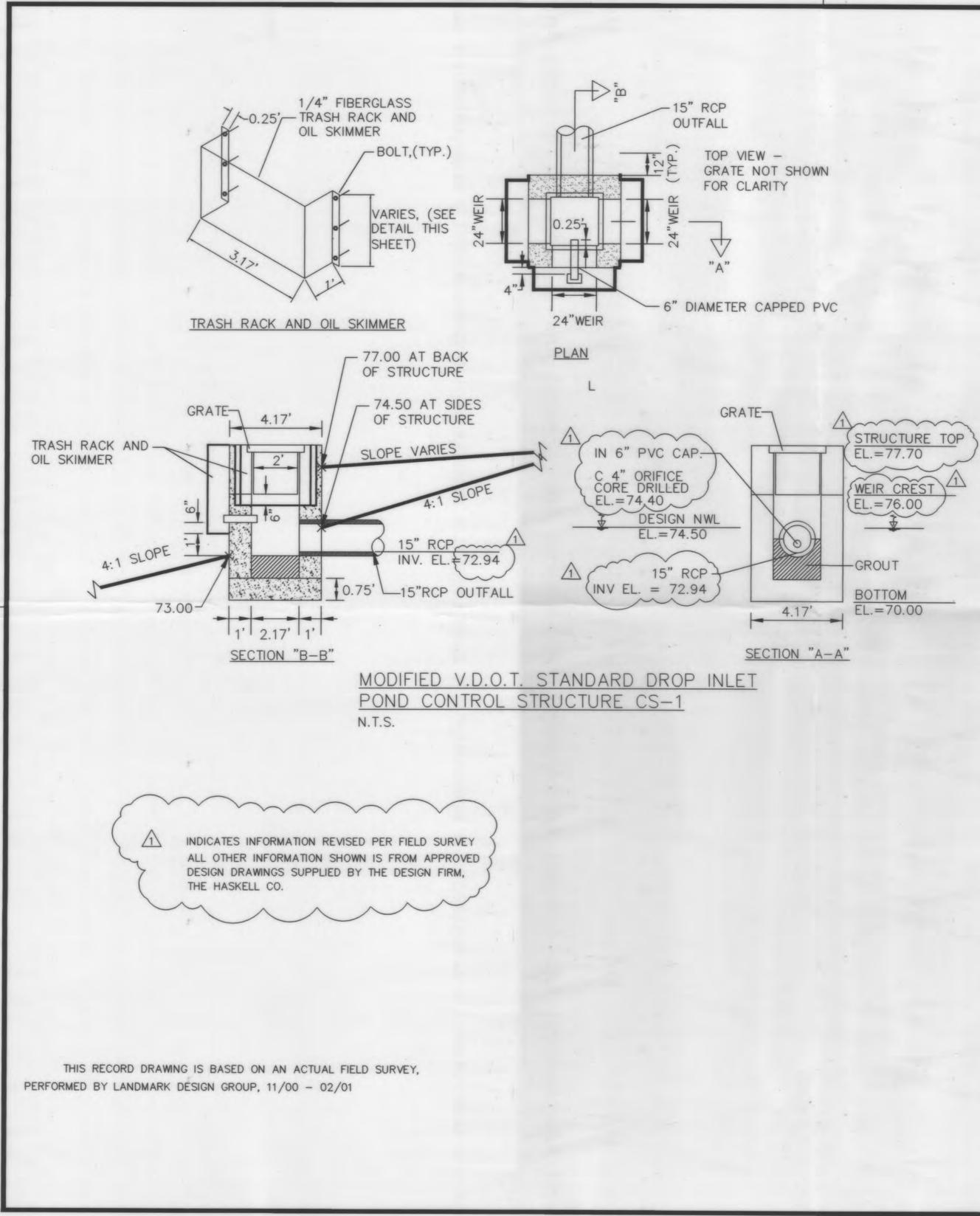
Construction Certification

Firm Name: The	e Haskell Company			
Mailing Address:	lll Riverside Ave.			
	cksonville, FL 32202			
Business Phone:	(904) 791-4577 (904) 791-4697			
Fax:	(904) 791-4697			
	ael H. Wheeler, P.E. I Engineer			
Signature: Michael H Whiley				
Date:	3-13-00			

I hereby certify to the best of my judgement, knowledge and belief that this Stormwater Management / BMP facility was monitored and constructed in accordance with the provisions of the approved design plan, specifications and stormwater management plan, except as specifically noted.


(Seal)


Virginia Registered Professional Engineer or Certified Land Surveyor


(Seal)

Virginia Registered Professional Engineer

3. As-Built Plan

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 16 of 158

INSPECTION & MAINTENANCE

PROGRAM THE FOLLOWING INSPECTION AND MAINTENANCE PROGRAM IS PROVIDED TO ASSURE THE FACILITIES FUNCTION AS DESIGNED. SHORT-TERM INSPECTIONS SHALL BE PROVIDED ON A REGULAR QUARTERLY OR "AS-NEEDED" BASIS AND AFTER SIGNIFICANT RAINFALL EVENTS OF ONE INCH OR MORE. LONG-TERM INSPECTIONS SHALL REQUIRE DRAINING OF POND FOR INSPECTION AND MAINTENANCE OF SEDIMENT FORE-BAY AREAS AND MAINTENANCE OF ROCK BAFFLES DEFINING THE SEDIMENT FOREBAY. LONG-TERM INSPECTIONS SHALL BE MADE ON A 5-YEAR TO 10-YEAR BASIS UNLESS THE SHORT-TERM INSPECTIONS REVEAL OTHERWISE.

SHORT-TERM INSPECTION & MAINTENANCE:

- (a) INSPECTION OF INLETS AND OUTLETS FOR OBSTRUCTIONS AND FUNCTIONAL CAPABILITY.
- (b) INSPECTION OF ALL STRUCTURAL COMPONENTS FOR SIGNS OF DAMAGE.
- (c) INSPECTION OF ALL SLOPES FOR SIGNS OF EROSION OR SLOUGHING OF SIDE BANKS.
- (d) INSPECTION FOR SEEPAGE AT DOWNSTREAM SIDE OF EARTHEN EMBANKMENTS, (*).
- (e) REMOVAL OF TRASH AND DEBRIS FROM ALL CONVEYANCE FACILITIES.
- (f) REGULAR MOWING AND REMOVAL OF ACCUMULATED VEGETATION.
- (g) STABILIZATION AND RESTORATION OF ERODED AREAS.

(*) EVIDENCE OF SEEPAGE SHALL IMMEDIATELY BE BROUGHT TO ENGINEER'S ATTENTION.

LONG TERM INSPECTION & MAINTENANCE:

THE FOLLOWING INSPECTION AND MAINTENANCE ACTIVITIES ARE TO BE PERFORMED ON A 5-YEAR BASIS UNLESS SHORT-TERM INSPECTIONS REVEAL OTHERWISE. THIS INSPECTION WILL REQUIRE DRAINAGE POND.

- (a) REMOVE ACCUMULATED SEDIMENTS.
- (b) INSPECTION AND REPAIR OF ROCK BAFFLES.

ADDENDUM TO RECORD DRAWING

OF

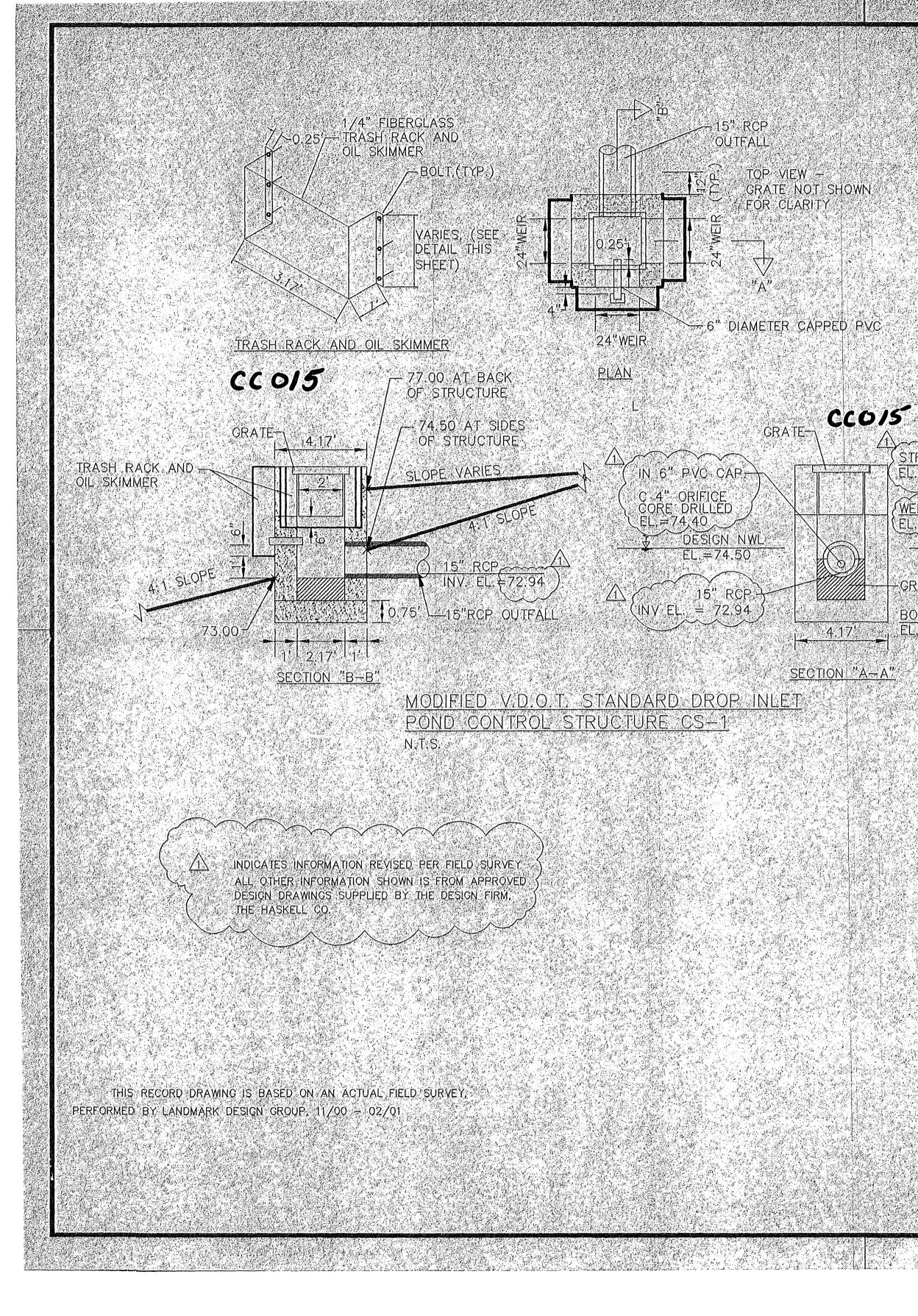
STORMWATER POND NO. 1 ANHEUSER BUSCH BREWERY TRANSPORTATION ADVANTAGE, PH. II

> DATE: 03/15/01 N.T.S. JAMES CITY COUNTY, VIRGINIA

> > 4029 Ironbound Road Suite 100 Williamsburg, VA 23188 Tel. (757) 253-2975 Fax (757) 229-0049 Email: Imdg@landmarkdgwb.com

5544 Greenwich Road Suite 200 Virginia Beach, VA 23462 Tel. (757) 473-2000 Fax (757) 497-7933 Email: Imdg@landmarkdg.com

COUNTY PLAN NO. SP-121-99 BMP ID NO. CC 015


DRAWN BY : PF CHKD. BY : AJR

Engineers · Planners · Surveyors

Landscape Architects + Environmental Consultants

PROJ. NO. : 1990223-000.20 DWG. NO. : 12109 AW

5 ~ 0 U V

INSPECTION & MAINTENANCE

PROGRAM THE FOLLOWING INSPECTION AND MAINTENANCE PROGRAM IS PROVIDED TO: ASSURE THE FACILITIES FUNCTION AS DESIGNED. SHORT-TERM INSPECTIONS SHALL BE PROVIDED ON A REGULAR QUARTERLY OR

"AS-NEEDED" BASIS AND AFTER SIGNIFICANT RAINFALL EVENTS OF ONE INCH OR MORE. LONG-TERM INSPECTIONS SHALL REQUIRE DRAINING OF POND FOR INSPECTION AND MAINTENANCE OF SEDIMENT FORE-BAY AREAS AND MAINTENANCE OF ROCK BAFFLES DEFINING THE SEDIMENT FOREBAY. LONG-TERM INSPECTIONS SHALL BE MADE ON A 5-YEAR TO 10-YEAR BASIS UNLESS THE SHORT-TERM INSPECTIONS REVEAL OTHERWISE!

SHORT-TERM INSPECTION & MAINTENANCE:

- INSPECTION OF INLETS AND OUTLETS FOR OBSTRUCTIONS AND FUNCTIONAL (CAPABILITY)
- INSPECTION OF ALL STRUCTURAL COMPONENTS FOR SIGNS OF DAMAGE.
- INSPECTION OF ALL SLOPES FOR SIGNS OF EROSION OR SLOUGHING OF SIDE BANKS.
- INSPECTION FOR SEEPAGE AT DOWNSTREAM SIDE OF EARTHEN (d) EMBANKMENTS, (*),
- REMOVAL OF TRASH AND DEBRIS FROM ALL CONVEYANCE FACILITIES. REGULAR MOWING AND REMOVAL OF ACCUMULATED VEGETATION. STABILIZATION AND RESTORATION OF ERODED AREAS. (g)

(*) EVIDENCE OF SEEPAGE SHALL IMMEDIATELY BE BROUGHT TO ENGINEER'S ATTENTION.

LONG TERM INSPECTION & MAINTENANCE:

THE FOLLOWING INSPECTION AND MAINTENANCE ACTIVITIES ARE TO BE PERFORMED ON A 5-YEAR BASIS UNLESS SHORT-TERM INSPECTIONS REVEAL OTHERWISE. THIS INSPECTION WILL REQUIRE DRAINAGE POND.

(a) REMOVE ACCUMULATED SEDIMENTS. (b) INSPECTION AND REPAIR OF ROCK BAFFLES.

ADDENDUM TO RECORD DRAWING

OF STORMWATER POND NO. 1 ANHEUSER BUSCH BREWERY TRANSPORTATION ADVANTAGE, PH. II

> DATE: 03/15/01 N.T.S. JAMES CITY COUNTY, VIRGINIA

> > COUNTY RLAN NO. SR-121-99 BMP ID NO. CC 015

> > > DWG. NO.

4029 Ironbound Road Sulte 100

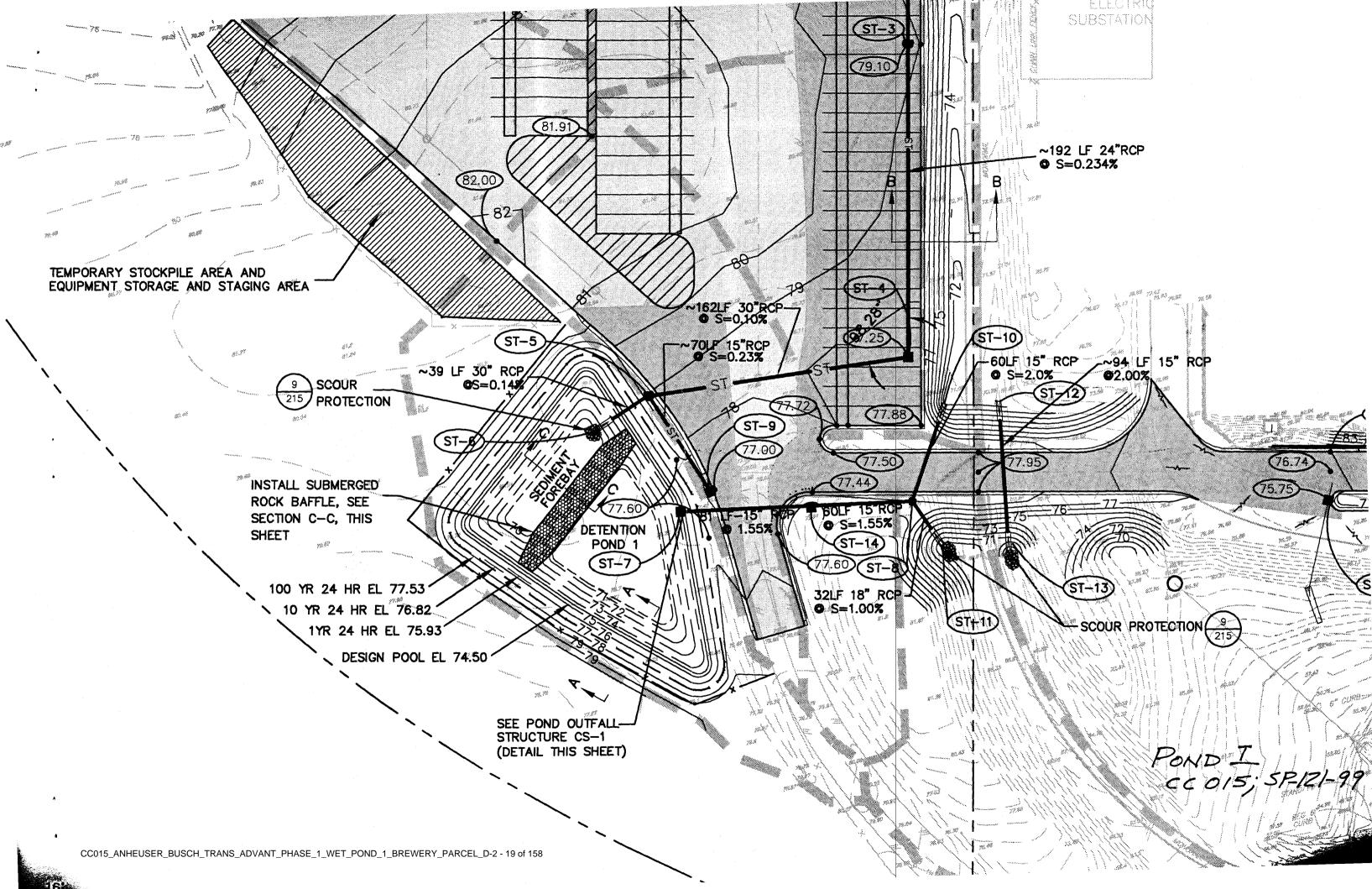
Sulle 100 Willigmsburg, VA 23188 Tel. (757) 253–2975 Fox (757) 229–0049 Emoli: Imdg@iandmarkdgwb.com

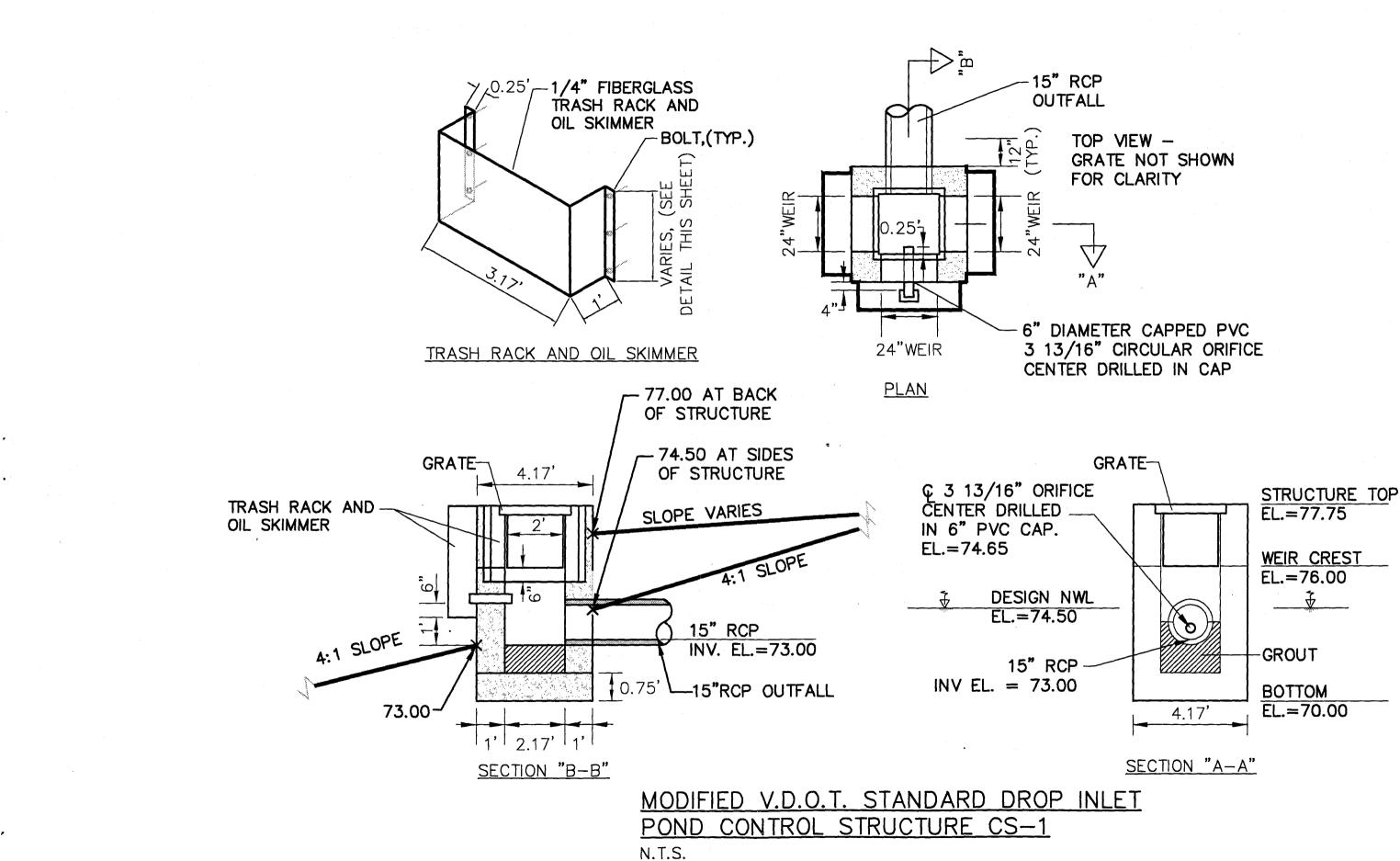
5544 Greenwich Road Sulte 200 Virginia Beach, VA 23462 Tel. (757) 473–2000 Fax (757) 497–7933 Email: Imdg@landmarkdg.com

PROJ. NO. : 1990223-000 20

インドレイ たみ

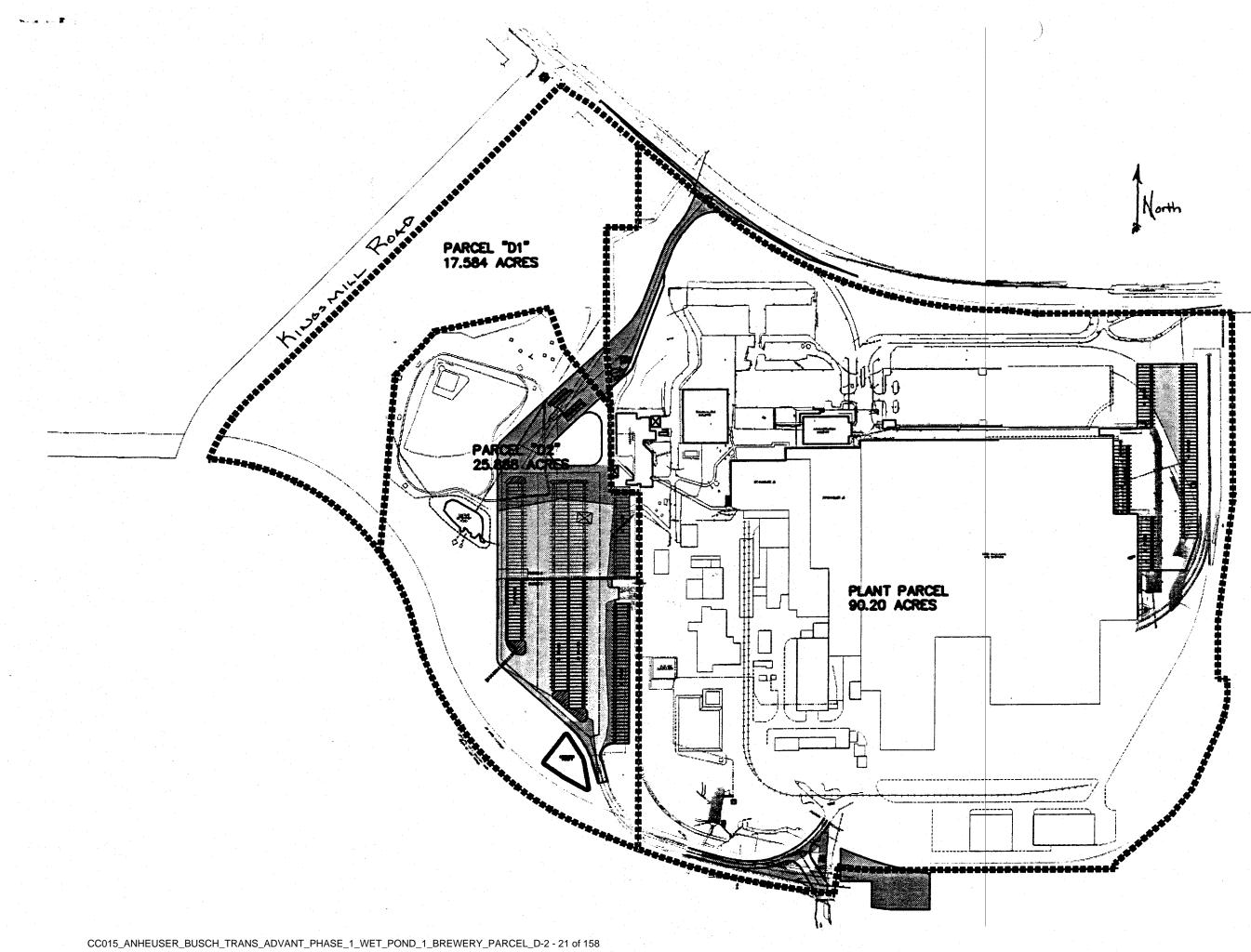
Landscape Architects + Environmental Consultants

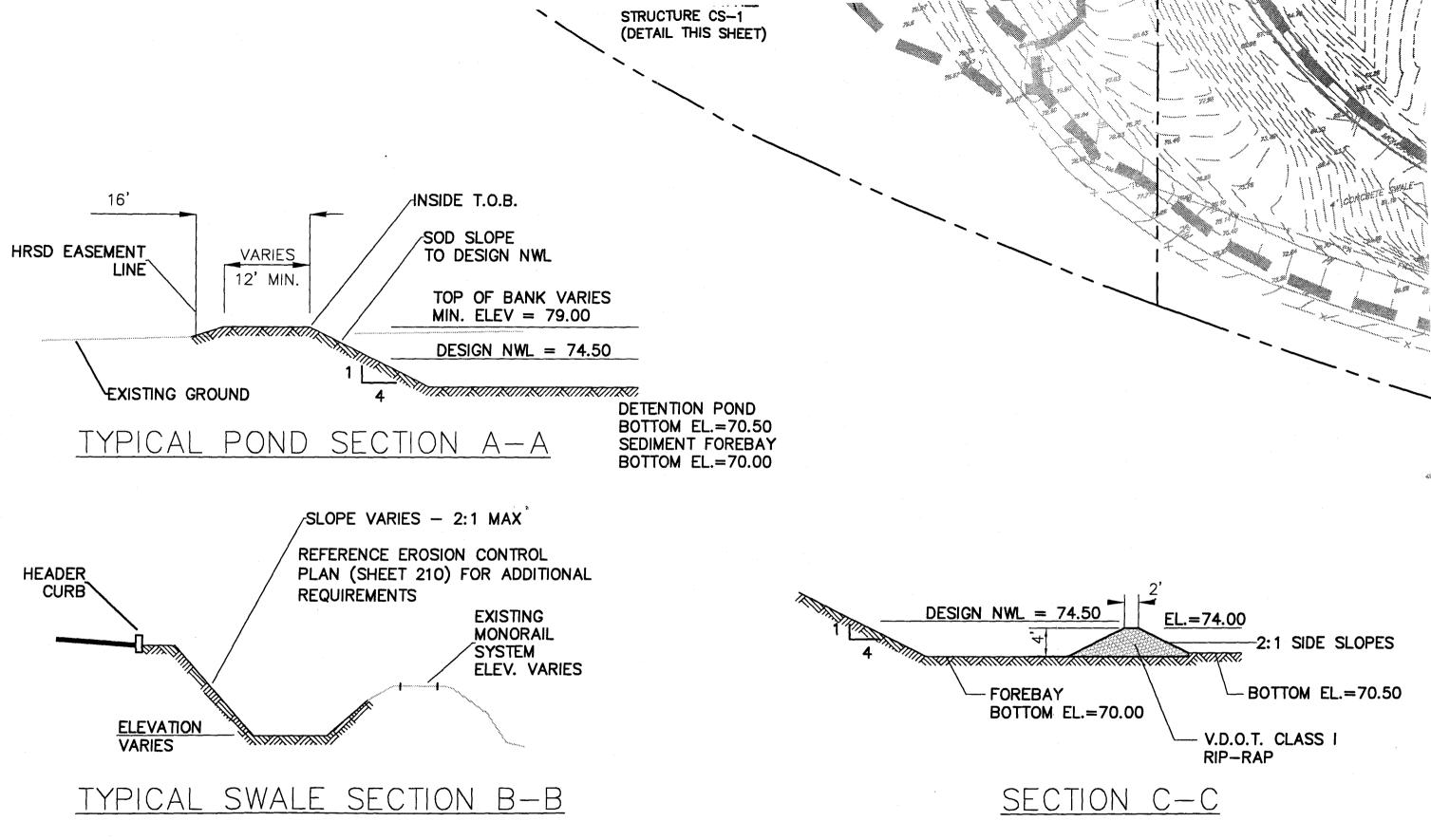

DRAWN BY ? PF


CHKD. BY : AJR

STRUCTURE TOP EL = 77,70 WEIR CREST EL = 76.00

GROUT BOTTOM EL, #70.00


5. Construction Plan


Н

J

Busch GARDENS

TRANSPORTATION ADVANTA ANHEUSER-BUSCH, INC LAND USE SUMMA MAD 12.2-99

 \sim

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 22 of 158

В

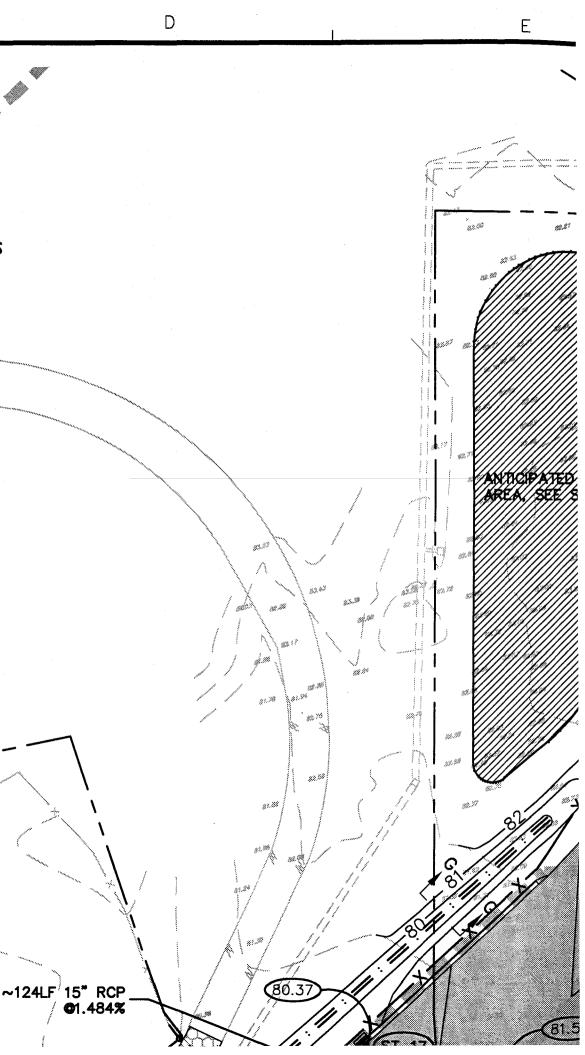
А

INSPECTION & MAINTENANCE PROGRAM

B

THE FOLLOWING INSPECTION AND MAINTENANCE PROGRAM IS PROVIDED TO ASSURE THE FACILITIES FUNCTION AS DESIGNED. SHORT-TERM INSPECTIONS SHALL BE PROVIDED ON A REGULAR QUARTERLY OR "AS-NEEDED" BASIS AND AFTER SIGNIFICANT RAINFALL EVENTS OF ONE INCH OR MORE. LONG-TERM INSPECTIONS SHALL REQUIRE DRAINING OF POND FOR INSPECTION AND MAINTENANCE OF SEDIMENT FORE-BAY AREAS AND MAINTENANCE OF ROCK BAFFLES DEFINING THE SEDIMENT FOREBAY. LONG-TERM INSPECTIONS SHALL BE MADE ON A 5-YEAR TO 10-YEAR BASIS UNLESS THE SHORT-TERM INSPECTIONS REVEAL OTHERWISE.

SHORT-TERM INSPECTION & MAINTENANCE:


- (a) INSPECTION OF INLETS AND OUTLETS FOR OBSTRUCTIONS AND FUNCTIONAL CAPABILITY.
- (b) INSPECTION OF ALL STRUCTURAL COMPONENTS FOR SIGNS OF DAMAGE.
- (C) INSPECTION OF ALL SLOPES FOR SIGNS OF EROSION OR SLOUGHING OF SIDE BANKS.
- (d) INSPECTION FOR SEEPAGE AT DOWNSTREAM SIDE OF EARTHEN EMBANKMENTS, (*).
- (e) REMOVAL OF TRASH AND DEBRIS FROM ALL CONVEYANCE FACILITIES.
- (f) REGULAR MOWING AND REMOVAL OF ACCUMULATED VEGETATION.
- (g) STABILIZATION AND RESTORATION OF ERODED AREAS.
- (*) EVIDENCE OF SEEPAGE SHALL IMMEDIATELY BE BROUGHT TO ENGINEER'S ATTENTION.

LONG TERM INSPECTION & MAINTENANCE:

THE FOLLOWING INSPECTION AND MAINTENANCE ACTIVITIES ARE TO BE PERFORMED ON A 5-YEAR BASIS UNLESS SHORT-TERM INSPECTIONS REVEAL OTHERWISE. THIS INSPECTION WILL REQUIRE DRAINAGE FOND.

- (a) REMOVE ACCUMULATED SEDIMENTS.
- (b) INSPECTION AND REPAIR OF ROCK BAFFLES.

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 #28 of 158

SECTION "A-A"

MODIFIED V.D.O.T. STANDARD DROP INLET POND CONTROL STRUCTURE CS-1

N.T.S.

STORM DRAINAGE STRUCTURE TABLE						1		
ST-*	DESCRIPTION OR TYPE	OPENING WIDTH, L	TOP/ GRATE ELEV. (3)	N	IN VE S	E	W	DETAIL NO.
ST-1	V.D.O.T. STD. PRECAST TOP T-D1-1 W/ BASE B-1	(FT) NA	78.00		73.03	-		8/213 11/213
ST-2	V.D.O.T. STD. PRECAST TOP T-D1-1 W/ BASE B-1	NA	77.25	72.70	71.95			8/21. 11/21
ST-3	V.D.O.T. STANDARD PRECAST MANHOLE	NA	79.10	71.45	71.45	-		16/21
ST-4	V.D.O.T. STD. PRECAST TOP T-D1-1 W/ BASE B-1	NA	77.25	71.00	_	-	70.50	8/21. 11/21
ST-5	V.D.O.T. STANDARD PRECAST MANHOLE	NA	79.00	-	71.59	70.34	70.34	16/21
ST-6	CONCRETE FLARED END SECTION	NA	NĄ	70.30				15/21
ST-7	POND 1 CONTROL STRUCTURE – MODIFIED V.D.O.T. DROP INLET DI-1	NA	REFERENCE DETAIL (THIS SHEET)					
ST-8	V.D.O.T. STD. PRECAST MANHOLE	NA .	78.00	70.06	69.81		69.81	16/21
ST-9	V.D.O.T. STD. CURB DROP INLET TOP T-DI-2C W/ BASE UNIT B-1	6.00	77.00	71.75	_	-		9/21 13/21
ST-10	CONCRETE FLARED END SECTION	NA	-	71.26	_		-	15/21
ST-11	CONCRETE FLARED END SECTION	NA		_	69.49	_		15/21
ST-12	CONCRETE FLARED END SECTION	NA	_	69.85	_		_	15/21
ST-13	CONCRETE FLARED END SECTION	NA	_	_	68.50	-		15/21
ST-14	V.D.O.T. STD. DROP INLET DI-1 W/ GRATE	NA	76.00	_	_	70.74	71.74	12/21
ST-15	V.D.O.T. STD. PRECAST TOP T-D1-1 W/ BASE B-1	NA	75.75	-	67.12	-		8/21 11/21

WIFED CLAY

Ô

19.50

12.19

5' Calif.

NOTES:

- 1. ALL GRATES WITHIN TRAFFIC AREAS SHALL BE RATED FOR HEAVY DUTY TRUCK TRAFFIC.
- 2. TOP/GRATE ELEVATION REFERS TO THE SURFACE INFLOW ELEVATION AND NOT THE TOP OF CURB.
- 3. STEPS SHALL BE PROVIDED IN ACCORDANCE WITH V.D.O.T. STANDARD ST-1 FOR STRUCTURE DEPTHS GREATER THAN FOUR FEET.

04/

03/ 03/

2/

01/

12/

12/

11/

- 4. UPON COMPLETION OF CONSTRUCTION THE WET EXTENDED DETENTION PONDS (INCLUDING THE DAM ASSOCIATED WITH POND 2) WILL BE CERTIFIED BY A PROFESSIONAL ENGINEER WHO HAS INSPECTED THE FACILITIES DURING CONSTRUCTION. UPON COMPLETION OF CONSTRUCTON, "AS-BUILT" DRAWINGS WILL BE PROVIDED WITH CERTIFICATION OF COMPLETION OF CONSTRUCTION.
- 5. ALL CONCRETE PIPE INSTALLED BENEATH TRAFFIC AREAS SHALL BE CLASS IV B-WALL PIPE.
- 6. MANHOLE AND INLET INVERTS SHALL BE SHAPED IN ACCORDANCE WITH V.D.O.T. STANDARD IS-1. (SEE DETAIL NO. 17, SHEET 213).

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 24 of 158

6. Design Calculations

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 25 of 158

-15 80 100 × 106.67

ANHEUSER-BUSCH - TRANSPORTATION ADVANTAGE PROJECT

LAND USE SUMMARY TABLE

The Anheuser-Busch properties at the Williamsburg Brewery have been subdivided into several individual properties with distinct ownership. The Transportation Advantage project will potentially impact four separate properties. The properties and their ownership are identified on the accompanying property description map.

PROPERTY DESCRIPTION	OWNERSHIP	REAL ESTATE NUMBER	TOTAL AREA
Plant Parcel	Anheuser-Busch, Inc.	(51-3)(01-1)	90.2 acres
Parcel 'D-1'	?	(50-2)(01-78)	17.6 acres
Parcel 'D-2'	?	(51-3)(01-3)	25.9 acres
Busch Gardens	Busch Properties, Inc.	(51-4)(01-9)	123.7 ac

Parcel 'D-1' Interior Tr	ailer Parking Additions & Dr	iveway Improve	ments
Building Areas	0.000 acres	0%	133.7
Pavement Areas	0.629 acres	4%	A A M
Grass, Trees, & Open Areas	16.955 acres -	96%	80.2
Pond Areas	0.000 acres	0%	133.7
Total Area	17.584 acres	100%	
			- 80.2 53.5 - green in
Parcel 'D-2' Interior Tr	ailer Parking Additions & Dr	iveway improve	ments 32.8
Building Areas	0.050 acres	0%	20.7 - midad
Pavement Areas	9.950 acres	38%	breaky
Grass, Trees, & Open Areas	14.170 acres	ുട്ട 55%	
Pond Areas	1.718 acres 715.07 1 cm 25.888 acres 32.	55 7%	
Total Area	25.888 acres 11	3 4 ³ 100%	

80

1.

Note:

The Phase 1 portion of the Transportation Advantage project lies entirely within the limits of Parcel 'D-2'.

STORMWATER MANAGEMENT PLAN

for

TRANSPORTATION ADVANTAGE – PHASE 1 ANHEUSER BUSCH

Williamsburg, Virginia

THE HASKELL COMPANY Haskell Building Jacksonville, Florida

Project 32193

Original Issue: November 16, 1999 Prepared By: Joseph W. Stepp, P.E.

TABLE OF CONTENTS

I. DESIGN NARRATIVE

- □ Introduction
- Project Location
- □ Existing Land Use
- □ Flood Zone
- □ Soil Conditions
- Design Concept
- Existing-Condition Analysis
- **D** Post-Condition Analysis
- □ Summary

II. STORMWATER SYSTEM ANALYSIS

SECTION A :	Existing-Condition Analysis – Phase I
SECTION B :	Post-Condition Analysis – Phase I
SECTION C :	Existing and Post Conditions Basin Input And Flood Routing Results
SECTION D :	Flood Routing Input Parameters
SECTION E:	Orifice/Stage-Storage/Volume Recovery Calculations
SECTION F :	Storm Sewer Design Tabulation 10 Year Storm Event

III. APPENDIX

- Project Vicinity Map
- □ U.S.G.S. Quad Map
- G F.E.M.A. Map
- **TR-55** Appendix B, Rainfall Maps
- □ TR-55 Table 2-2, Runoff Curve Numbers
- □ SCS Soil Survey Map w/ Related Information
- Soil Boring Logs

STORMWATER MANAGEMENT PLAN

Anheuseur-Busch Transportation Advantage – Phase I Jacksonville, Florida

November 16, 1999

DESIGN NARRATIVE

Introduction

Anheuser-Busch is proposing to expand their truck and trailer staging and storage areas through the "Transportation Advantage" project. <u>Phase One</u> of the Transportation Advantage project will consist of an expansion of existing parking facility to accommodate 123 truck and trailer storage spaces.

D Project Description

Phase One expansion will include construction of 39 new asphalt paved truck storage spaces and addition of new stormwater facilities to serve the new construction. In addition, existing paved areas will be revitalized and new asphalt overlay provided. Restriping of the area and provision of curbing and/or curb & gutter will be provided where necessary for stormwater control.

Project Location

As shown on the location map included herewith, Phase One is located in the southwest area of the existing brewery.

Existing Land Use

Currently, Phase One project area is used as a construction staging area. Access to the area is from an existing guarded paved roadway from the south.

Flood Zone

Based on the Flood Insurance Rate Map (Panel Number 510201 0050 B, Effective Date February 6, 1991), the site and surrounding areas are located in Zone X. This zone is outside of the 500-year flood plain. Maps and related information are included in the appendix of this report.

Soil Conditions

References: SCS Soil Survey Map and Related Information URS Griner Woodward Clyde Soil Boring Logs

Based on the SCS Soil Survey, the project is located within an area designated Urban Land (#37). With reference to the survey narrative, included with this mapping unit are areas of undisturbed soils, commonly well-drained Emporia soils (19A), and moderately well drained Slagle soils (#29B).

In addition to the soil survey, test borings were provided by URS Greiner Woodward Clyde. A comparison of the boring logs with the Engineering Index Properties (Table 13) of the above-mentioned survey shows a close resemblance between Emporia and Slagle soil units and the existing soils on site.

The above referenced information is contained in the Appendix of this report.

Design Concept

In designing the grading scheme for the newly paved areas (and, in an effort to match existing drainage patterns of the site) collection of stormwater runoff from the newly paved areas would also include a portion of the existing paved parking area which was not included previously collected. Since, the Chesapeake Bay Preservation Ordinance requires a 10 percent reduction in non-point source pollution load for re-development sites, inclusion of the existing paved parking area into the stormwater system should meet this requirement for the Phase One expansion area. Also, a portion of the existing pavement (approximately 11,150 sf) will be removed as part of Phase One.

In addition, to meet channel downstream erosion requirements, the stormwater management system will be designed to new James City County requirements for the 1 year -24 hr storm event. Attenuation of the 2 and 10 year -24 hour storms will also be provided.

Existing Conditions Analysis

References: Color Aerial Photo showing existing conditions for Phase One Area Topographic survey showing existing conditions for Phase One Area

As shown on the map of existing conditions, an existing drainage divide splits Phase One area. Currently approximately 88,585-sf +/- of asphalt pavement drains westerly to a collection system, which conveys the stormwater runoff to an existing wet detention area adjacent to the site and ballfield area. The remaining 82,810-sf +/- of asphalt pavement drains easterly to an open-channel conveyance system that traverses along the westerly and southerly side of the existing monorail system to a point of discharge through an existing 72-inch pipe that discharges to off-site drainage areas south of the brewery. This

pipe also is the main conveyance pipe for the brewery drainage system within the boundaries of the monorail system. A sparsely wooded area separates the open-channel and the existing pavement area.

A time of concentration path is shown on the map of existing conditions which is representative of the Phase One area draining to the open-channel section along the monorail. Time of concentration for this contributing area is calculated to be approximately 24 minutes.

Using the SCS Unit Hydrograph Methodology, discharge from the Phase One area was computed for the 1, 2, 10 and 100 year return periods of 24 hour duration. These hydrographs were then used as guidelines for post-conditions design.

Reference the Stormwater Analysis – Section A for details of the existing-conditions analysis.

D Post Conditions Analysis

References: Topographic survey showing post-conditions for Phase One Area

As shown on the Post-Conditions map, existing drainage patterns are being maintained for Phase One site area. The existing drainage divide will be maintained "as-is" by use of asphalt leveling courses and a new wearing course of asphalt-concrete. Currently, a nonwoven geotextile will be utilized as part of the pavement rehabilitation.

With respect to maintaining the existing drainage divide, the existing paved area currently draining westerly will continue to drain westerly except for a small portion of pavement (approximately 11,150 sf), which will be removed as part of demolition. Given this fact, post-condition drainage analysis of the area draining westerly will not be presented at this time since there is no additional impact to this area under Phase One redevelopment. (Reduction of impervious area draining westerly is approximately 12.5 percent).

Post-conditions analysis will focus on the Phase One area draining easterly.

Under post-conditions a new paved area will be provided along the East side of the existing pavement. This new paved area will provide 39 new truck storage spaces. In addition, a small triangular area of new pavement will be necessary at the southwest quadrant area of the existing paved access road connecting to Phase One. This additional pavement was necessary to provide for safe and efficient turning movements of truck-trailer maneuvering.

A wet detention pond will be provided for post-conditions. A wet detention was chosen over dry due to the existing clayey soils beneath the ground surface, the depth of the proposed detention pond, and the fact that the existing detention pond adjacent to the project area is observed to be wet.

As shown on the post-conditions map, there are a total of four (4) drainage areas that will contribute runoff to the pond for a total of 3.2 acres.

(Please note that drainage area No. 1 is a future parking expansion area and although not constructed under Phase One, the pond has been sized to include this area)

To meet downstream channel erosion protection requirements, the new James City County requirements for routing of the 1 yr 24 hr storm event of 2.8 inches into the pond and sizing an orifice to discharge this volume over a 24 hour period was used. The "Kerplunk" method was used in this analysis. In addition, the 2 and 10-year storm events of 24-hour duration were routed through the detention pond and the weir control structure sized to control the outlet discharge at or below the discharge rates computed in the existing-condition analysis. Finally, the 100-year storm is routed to assure one (1) foot of freeboard between the top of pond and the maximum stage attained in the pond.

The SCS Unit Hydrograph methodology was used along with the adICPR program (advanced Interconnected Pond Routing). A description of this program is included in the Appendix of this report.

Due to the direct connection of the paved parking areas to the pond the initial abstraction of runoff is less than the normal abstraction used in the SCS runoff equation; therefore, (all) impervious areas (including the pond water surface area) are appropriately modeled as directly connected impervious area (DCIA) in the stormwater drainage model.

Although time of concentration for the system is less than 10 minutes, the flood routing analysis will use 10 minutes. Tr= 9.42 mm of

Reference the Stormwater Analysis - Section B for details of the post-conditions analysis.

To meet the 10 percent reduction in non-point source pollutant loading (as required by the Chesapeake Bay Preservation Ordinance), the following is presented:

As noted above, under existing conditions there is approximately 82,810sf +/- of existing paved parking area draining easterly and southerly to offsite areas. Under post-conditions the total impervious area (including new pavement) draining easterly to off- site areas without being treated is approximately 36,350 sf +/- (indicated as drainage areas 5 & 6 on postconditions map). The impervious area being captured and directed to the proposed detention area for treatment is approximately 98,886-sf +/J (indicated as drainage areas 1, 2 & 3 on post-conditions map)/ Of the 98,886-sf of paved area to be treated, approximately (49,271-sf)'s existing paved area. Therefore, the net reduction in impervious area draining

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2-32 of 158 3

se stra

Fre
$$82,810 \text{ ft}^2$$
 - uncentrolled - load $X \implies 82,810$
Post $98,886 \text{ ft}^2$ - after development $\implies 98,886$
Pand reduces load by $50\% \implies 49,443$

-

easterly and southerly to off-site areas is reduced by approximately (50,460 sf or approximately 58.5 percent. This reduction should meet the 10 percent reduction required by the Chesapeake Bay Preservation Ordinance EXIST 82810 NOW 4614005F (56.190) for re-developed areas.

Summary

The following is a summary of results for the design of the system.

Discharge Rate Analysis:

Design Storm	Existing Conditions (cfs)	Post Conditions (cfs)
1 yr – 24 hr 2 yr – 24 hr 10 yr – 24 hr	3.1 4.6 10.1	0.32 0.37 0.37 2.17 0.58 0.58
and the the second		551 @ EL. 77.11

79.00 77.11 1.891 FB REATOR JOK

Minimum top of bank elevation for the detention pond = 79.0 ft \checkmark

Emergency Spillway is the paved roadway fronting the pond Drophoveres, = 77.11-77.10= 0.01 Elevation to top paved roadway = top of curb elevation = 77.10 ft.

100 year flood stage in pond = 77.11 ft. \bigcirc

75 40 - 77 5 75 40 - 77 5 76 86 77 5 76 86 77 5 76 86 77 5

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 34 of 158

STORMWATER ANALYSIS ANHEUSER-BUSCH TRANSPORTATION ADVANTAGE WILLIAMSBURG, VA

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 35 of 158

SECTION A EXISTING CONDITIONS ANALYSIS – PHASE 1

- Color Photo of Existing Site
- **Basin and Area Delineation**
- Runoff Curve Number Calculation
- **D** Time of Concentration Calculation
- □ Hydrograph Input Parameters for 1, 2, 10 & 100 yr Storm Events
- **Results**

SECTION B POST CONDITIONS ANALYSIS – PHASE 1

- **Basin and Area Delineation**
- **Drainage Area Coverage's**
- Design Runoff Curve Number/DCIA Calculation
- **D** Time of Concentration
- □ Hydrograph Input Parameters for 1, 2, 10 & 100 yr Storm Events
- **Drop Structure Detail (Modified VDOT Drop Inlet)**

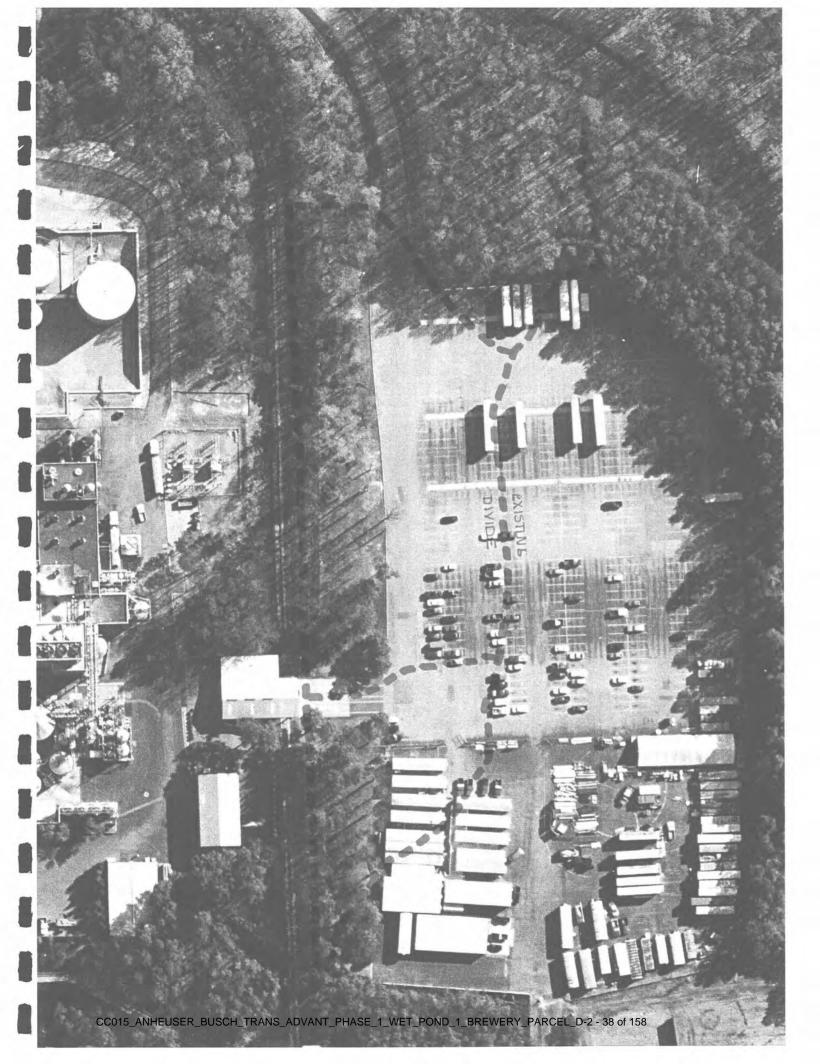
SECTION C EXISTING AND POST CONDITIONS BASIN INPUT SUMMARIES AND FLOOD ROUTING RESULTS

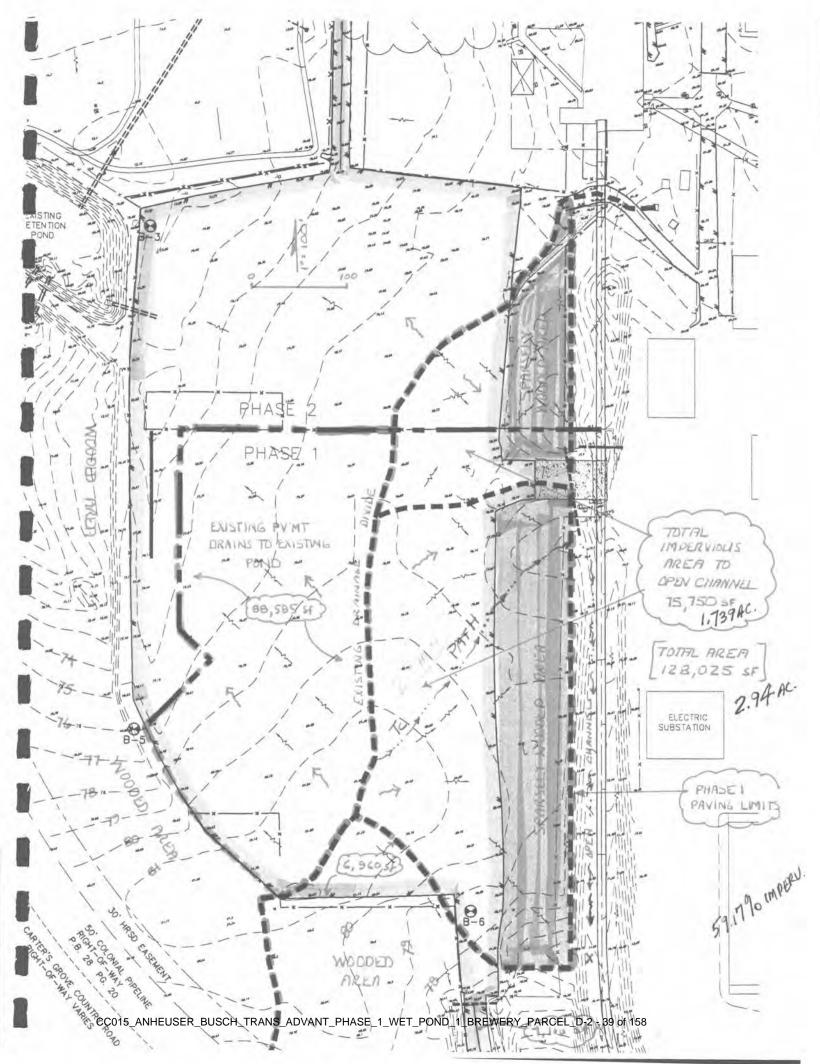
- □ 1 yr 24 hr Storm Event
- □ 2 yr 24 hr Storm Event
- \Box 10 yr 24 hr Storm Event
- □ 100 yr 24 hr Storm Event

SECTION D

FLOOD ROUTING INPUT PARAMETERS

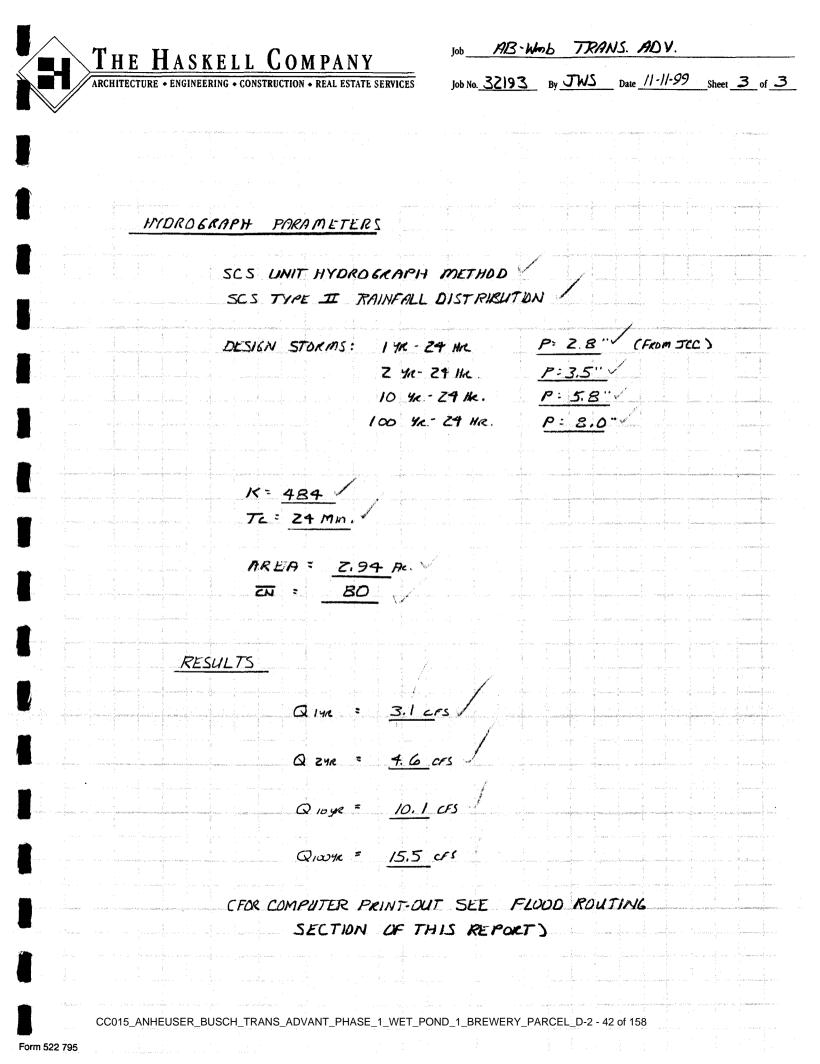
SECTION E

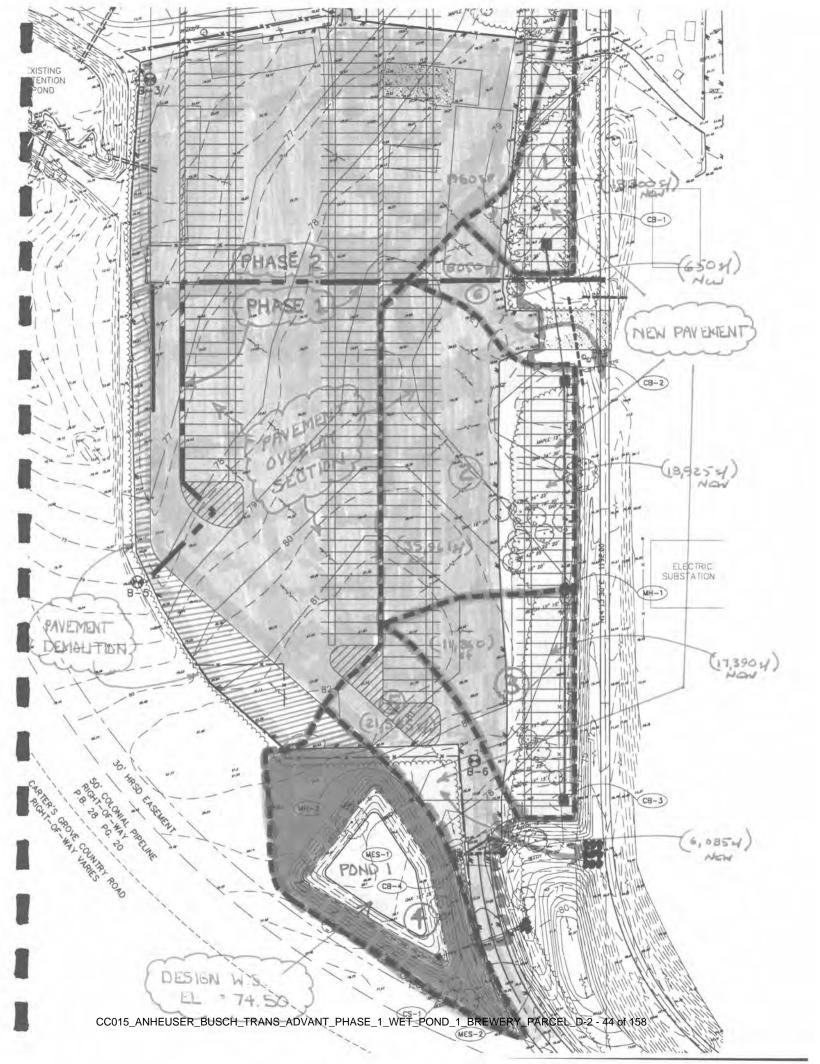

ORIFICE/STAGE-STORAGE/VOLUME RECOVERY CALCULATIONS


SECTION F

STORM SEWER DESIGN TABULATION -- 10 YR STORM

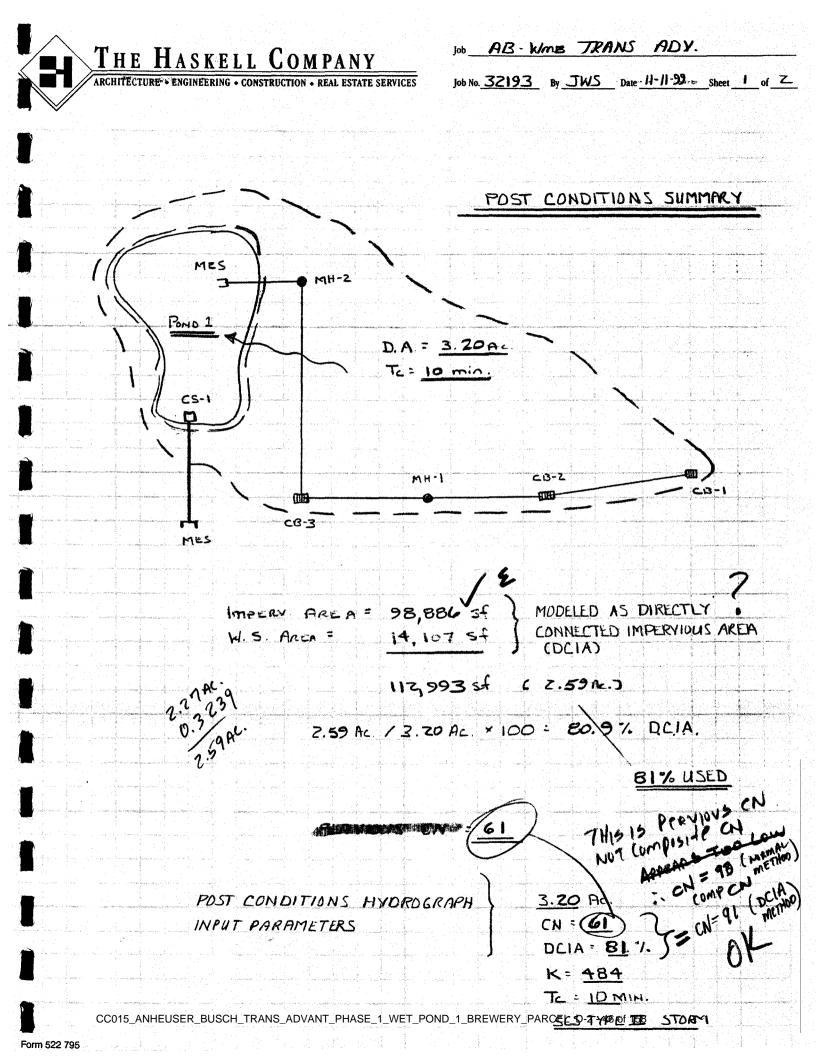
APPENDIX MAPS AND MISCELLANEOUS INFORMATION

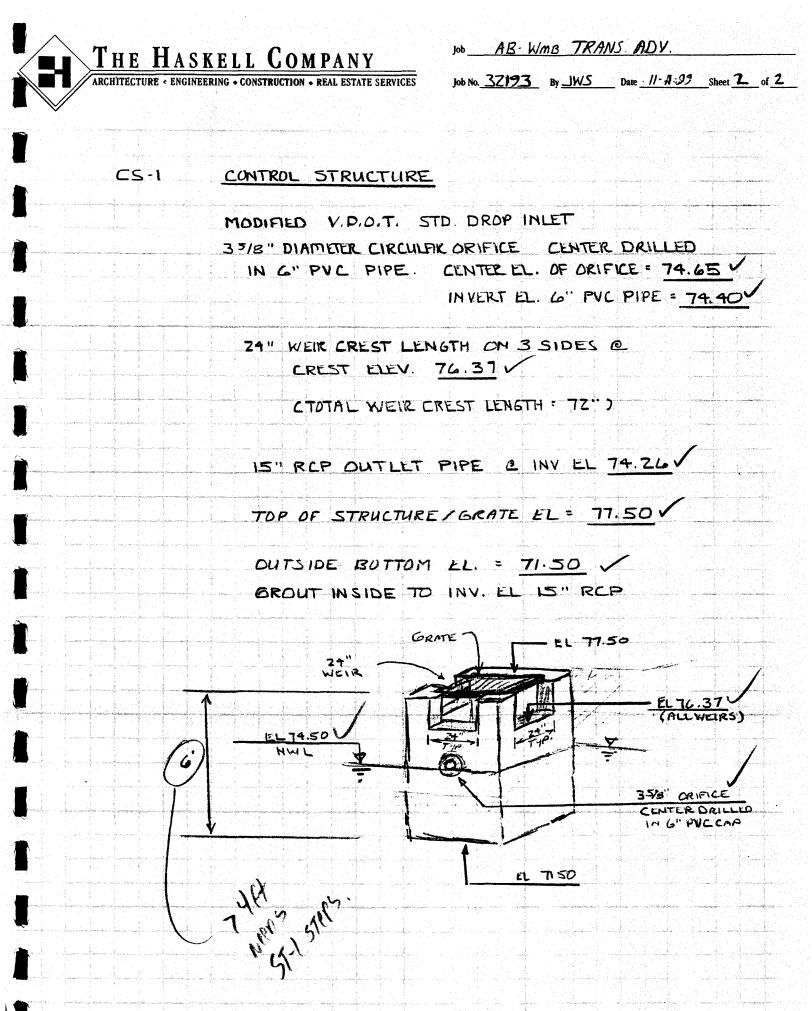

SECTION A EXISTING CONDITIONS ANALYSIS


Job AB-WAS TRANS ADV. THE HASKELL COMPANY Job No: 32193 By JWS Date 11-11-99 Sheet 1 of 3 RCHITECTURE • ENGINEERING • CONSTRUCTION • REAL ESTATE SERVICES EXISTING CONDITIONS ANALYSIS - PHASE 1 (2.94 Ac. +1.) TOTAL AREA : 128 025 SF EXISTING IMPERVIOUS AREA ~ 75 750 SF (CONC. & ASPHALT PYMT) REMAINING PERVIOUS AREA ~ 52,275 SF (WOODED AREA) FROM SCS SOIL SURVEY SOILS ARE CLASSIFIED AS NO. 37- URBAN LAND Y ADJACENT SOILS ARE SHOWN TO BE NO 198 & 29B WHICH ARE RESPECTIVELY KEMPSVILLE - EMPORIA FINE SANDY LOAM AND SLAGLE FINE SANDY LDAM. HSG : B CKEMPSYILLE) 19B C (EMPOKIA) 29 B HSG = C 14SG (B) WILL BE USED FOR EXISTING CONDITIONS ANALYSIS DUE TO UNKNOWING CONCERNING THE UKBAN LAND CLASSIFICATION THEREFORE. USE A WOODED AREA (GOOD CUNDITION) CN : 55 COMPOSITE CN = [75,150 (38) + 52,275 (55)] [128,025] 50.4 USE LN BO CC015 ANHEUSER BUSCH TRANS ADVANT PHASE 1 WET POND 1 BREWERY PARCEL D-2 - 40 of 158

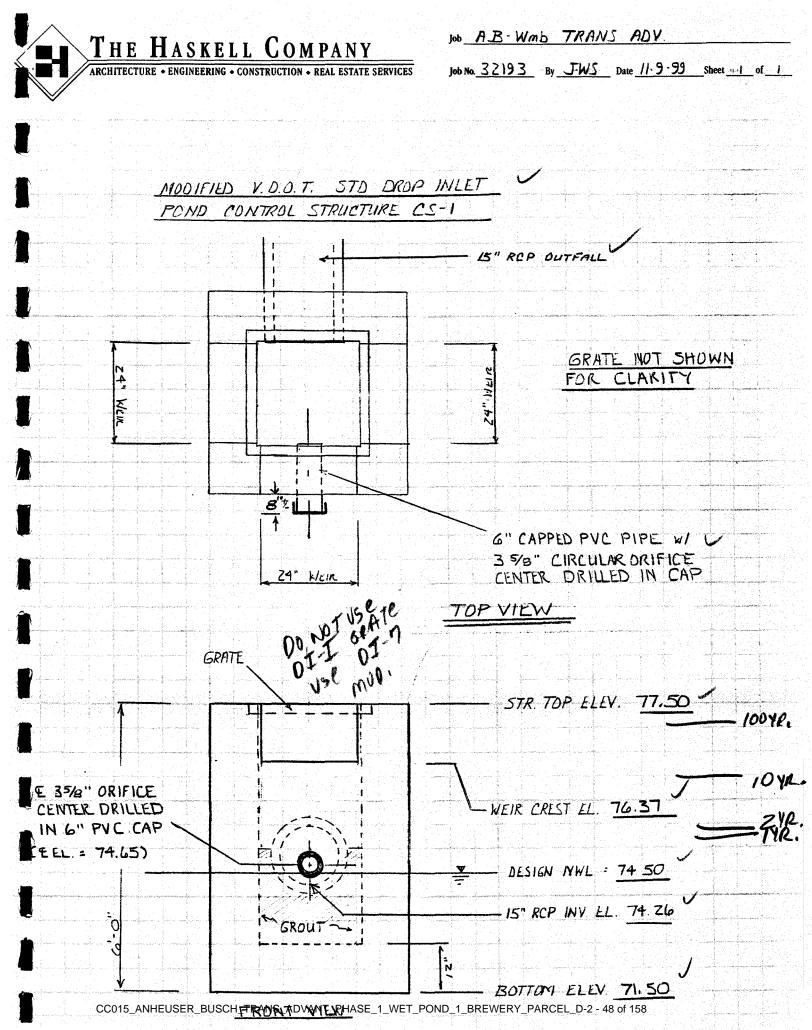
JOB AB-WAL TRANS. ADY. THE HASKELL COMPANY Job No. 32193 By JWS Date 11-11-99 Sheet 2 of 3 RCHITECTURE • ENGINEERING • CONSTRUCTION • REAL ESTATE SERVICES TIME OF CONCENTRATION TE PATH IS SHOWN ON ATTACHED MAP Pz = 3.5" V The 200' OVERLAND SHEET FLOW (ASPHALT) C~ 1.9%. (n=0.012) TE 2 100' OVERLAND SHILT FLOW (WIDODED) C - 2.57. (n=0.4) T, , 400' SHALLOW CONIC. FLOWS C ~ 1.5% 0.037 HRS. 2.22 MIN. $T_{t_1} = \frac{0.007 \left[(0.012) (200) \right]}{(3.5)^{0.5} (0.019)^{0.4}}$ = 0.313 Jas. 1818M $T_{z} = \frac{0.007 \left[(0.4) (100) \right]^{0.2}}{(3.5)^{0.5} (0.025)^{0.4}}$ $T_{E_3} : V = \frac{16.1345}{16.1345} \frac{5^{1/2}}{16.1345} : \frac{16.1345}{(0.015)^{1/2}} = \frac{2.0}{165} \frac{1}{3.36} \frac{1}{3.36} \frac{1}{165} \frac{1}{3.36} \frac{1}{3.36} \frac{1}{165} \frac{1}{3.36} \frac{1}{3.36} \frac{1}{165} \frac{1}{3.36} \frac{1}{165} \frac{1}{3.36} \frac{1}{165} \frac{1}{3.36} \frac{1}{165} \frac{1}{3.36} \frac{1}{165} \frac{1}{3.36} \frac{1}{165} \frac{1}{16$ Te = 0.41 HRS OR ZA MINUTES CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 41 of 158 Form 522 795

SECTION B POST CONDITIONS ANALYSIS


CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 43 of 158

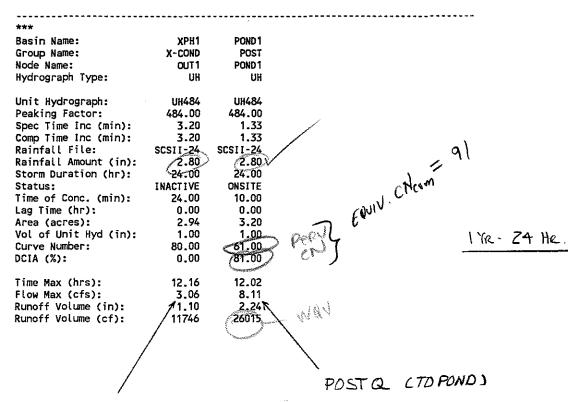


	ARCHITECTURE + ENGINEERING + GONSTRUCTION + REAL ESTATE SERVICES Job No. 32193 By TWS Date 11-11-99 Sheet 1 o
	PREAS CONTRIBUTING TO NEW POND I
alta - Calendar Andrea and - C	DRAINAGE AREA NO 1
	n.35 ^m
	HREA : 15,250 SF +1- EX. PVMT. : 1950 SF
	100% IMPERVIOUS AREA NEW PUNT = 13,300 SF
antan manuna internet desalate trapet may de	
A construction of the second sec	0.35 A. C CN 98
а 1	
	DRAINAGE AREA NO Z
	AREA = 54,886 SF 71- EX. PUMT. = 35,961 SF
a and a second second	AREA = 54,886 SF H- EX. PUMT. = 35,961 SF
literiator considerate anticada aco	100"1. IMPERVIOUS AREA NEW PUMT = 18,925 SF
for a substance of the second se	1.26 R. CN 98
free - Mar American (* 1997) Gel	
ta ta standarda a series da Series da series da s Series da series da s	DRAINAGE AREA NO.3
	DIRMINIAGE MIKEH NO. 3 0160 PL
to a start of the second	AREA : 28,750 SFT- EX PUNT : 11,360 SF
han an a	100 %. IM PERVIOUS AREA NEW PUMT = 17, 390 SF
	· · 潘· · 清· · 新闻的话,我们就是这些"你们都不能,我们都不能。" 【117 · · · · · · · · · · · · · · · · · ·
eres a restancement	DRAINAGE AREA NO 4 0.93 AREA : 40,600 SF 71- EIMP 31
	DRAINABE AREA IND. 7 0.93 6 MP
	AREA : 40,600 SF 71-
prove of Springers 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Antonio de Constante de la const a constante de la constante de a constante de la constante de a constante de la constante de a constante de la constante	A 12 50 /
	WATER SURFACE AREA = 19,107 SF 11-
	WATER SURFACE AREA = 19,107 SFTI- PERVIOUS AREA = Z6,493 SFTI- NO IMPERVIOUS SURFACE
	WATER SURFACE AREA = 19,107 SFTI- PERVIOUS AREA = Z6,493 SFTI- BIM
	WATER SURFACE AREA = 14,107 SFTI- PERVIOUS AREA = Z6,493 SFTI- NO IMPERVIOUS SURFACE
	WATER SURFACE AREA = 19,107 SFTI- PERVIOUS AREA = Z6,493 SFTI- BIM


CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 45 of 158

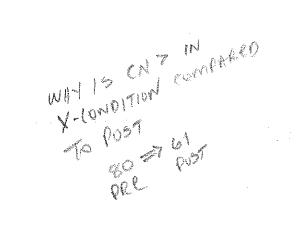
Form 522 795

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 47 of 158



CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 49 of 158

1.00


Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc.

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 1 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999

[1]

EXISTING Q

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 50 of 158

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 1 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999

●(Time uni Node Name	τs - nou Group Name	Max Time Conditions	Max Stage (ft)			Max Surface Area (sf)			Max Time Max Outflow Outflow (cfs)
OUT1 POND1	POST POST	12.00 14.01	74.50 75.63	74.50	0.0001 0.0050	0.00 16458.39	14.04 12.00	0.32 8.06	0.00 0.00 14.04 0.32
			T						1
				\mathbf{N}					OUTFLOW

MAX. STALE

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 51 of 158

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc. AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 2 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999 *** Basin Name: XPH1 POND1 Group Name: POST X-COND Node Name: OUT1 POND 1 Hydrograph Type: UH UH Unit Hydrograph: UH484 UH484 Peaking Factor: 484.00 484.00 Spec Time Inc (min): 3.20 1.33 Comp Time Inc (min): 3.20 1.33 Rainfall File: SCSII-24 SCSII-24 Rainfall Amount (in): 3.50 3.50 Storm Duration (hr): 24.00 24.00 Status: INACTIVE ONSITE Time of Conc. (min): 24.00 10.00 Lag Time (hr): 0.00 0.00 2 1R. 24 HR Area (acres): 2.94 3.20 (Neanin 29) Vol of Unit Hyd (in): 1.00 1.00 0e¢ Curve Number: 61.00 80,00 DCIA (%): 0.00 81.00 Time Max (hrs): 12,02 12.16 4.59 Flow Max (cfs): (10.36 Runoff Volume (in): 2.86 Runoff Volume (cf): 17440 33210 EXISTINGQ POST Q (TO POND)

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 2 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999

•(Time units - hours)

Node Name	Group Name	Max Time Conditions	Max Stage (ft)			Max Surface Area (sf)	Max Time Inflow	Max Inflow (cfs)		Max	Outflow (cfs)
OUT1 POND1	POST POST	12.00 14.16	74.50 75.92	74.50	0.0001 0.0062	0.00 17084.87	14.19 12.00	0.37 10.28			0.00 0.37
										/	1
				MAX. ST.	AGE			1	ATFLOM	1	

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 10 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999

*** Basin Name: XPH1 POND1 Group Name: X-COND POST Node Name: OUT1 POND1 Hydrograph Type: UH UH Unit Hydrograph: UH484 UH484 Peaking Factor: 484.00 484.00 Spec Time Inc (min): 3.20 1.33 Comp Time Inc (min): 3.20 1.33 Rainfall File: SCSII-24 SCSII-24 Rainfall Amount (in): 5.80 5.80 24.00 Storm Duration (hr): 24.00 Status: INACTIVE ONSITE Time of Conc. (min): 24.00 10.00 Lag Time (hr): 0.00 0.00 Area (acres): 2.94 3.20 f (Neaw = 91 Vol of Unit Hyd (in): 1.00 1.00 Curve Number: 80.00 61.00 DCIA (%): 0.00 81.00 Time Max (hrs): 12.16 12.02 Flow Max (cfs): 18.06 10.07 Runoff Volume (in): A 3.60 Runoff Volume (cf): 38382 57688 POST Q CTO PONDI EXISTING Q

10 yr - 29 ltr

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc. [1]

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 10 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999

•(Time units - hours)

Node Name	Group Name	Max Time Conditions	Max Stage (ft)			Max Surface Area (sf)		Max Inflow (cfs)	Max Time Max Outf Outflow (c	low fs)
OUT1 POND1	POST POST	12.00 12.41	74.50 76.58	74.50 78.00	0.0001 0.0101	0.00 18547.33	12.41 12.00	2.17 17.93	0.00 0.1 12.41 2.	
			- T						/	
		an an taon 1970. Taon amin'		Λ					OUTFLOW	

MAX. STAGE

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc.

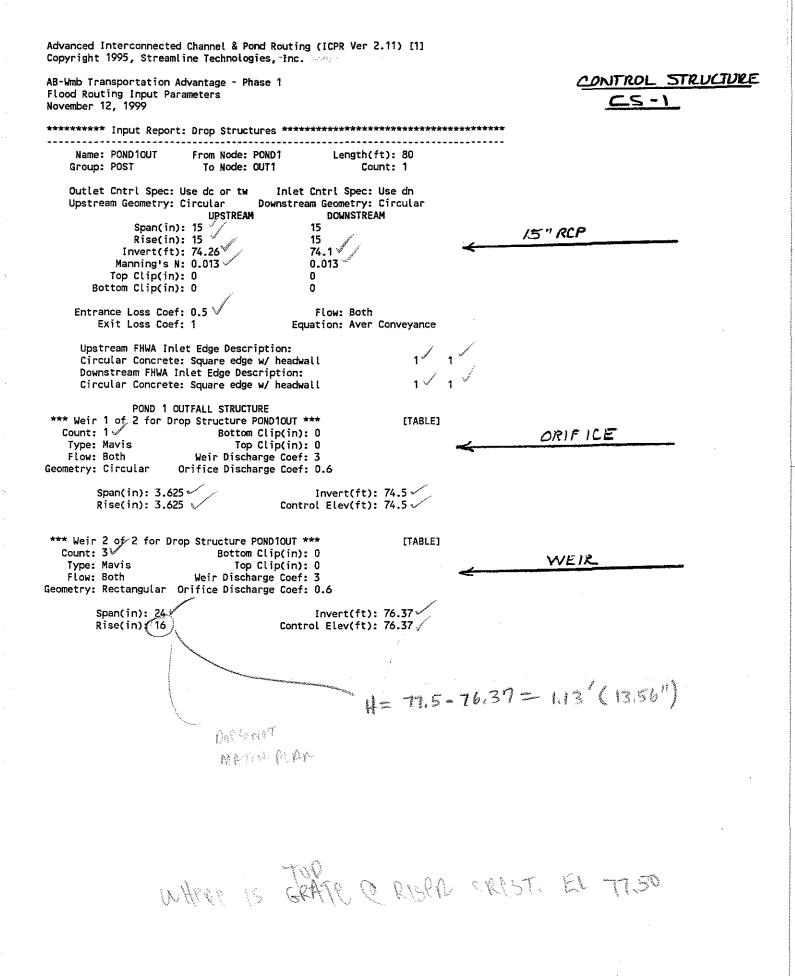
[1]

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 100 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999

.... *** Basin Name: XPH1 POND1 Group Name: X-COND POST Node Name: OUT1 POND1 Hydrograph Type: UH UH Unit Hydrograph: UH484 UH484 Peaking Factor: 484,00 484.00 Spec Time Inc (min): 3.20 1.33 Comp Time Inc (min): 3.20 1.33 Rainfall File: SCSII-24 SCSII-24 Rainfall Amount (in): 8.00 8.00 Storm Duration (hr): 24.00 24.00 Status: INACTIVE ONSITE Time of Conc. (min): 24.00 10.00 Lag Time (hr): 0.00 0.00 1.00 Z CN PAVIN = 91 51.00 Z CN PAVIN = 91 Area (acres): 2.94 Vol of Unit Hyd (in): 1.00 Curve Number: 80.00 61.00 DCIA (%): 0.00 81.00 Time Max (hrs): 12,11 12.02 Flow Max (cfs): 15.54 25.66 7.04 Runoff Volume (in): 5.62 Runoff Volume (cf): 59951 81824

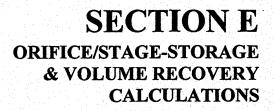
100 4r - 24 MR.

POST Q (TO POND)


Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 100 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 12, 1999

•(Time units - hours)


Node Name		Time itions	Max	-					Surface rea (sf)	x Time Inflow		x Time utflow	Max	Outflow (cfs)	
OUT1 POND1	POST POST	12.00 12.27	(74.50	> 74 > 78	.50 .00		0001 0129	 0.00 19734.03	12.27 12.00	5.51 25.48	0.00 12.27		0.00	
						IX .	ST	16E							

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 59 of 158

Advanced Interconnected Channel & Pond Routi Copyright 1995, Streamline Technologies, Inc			
AB-Wmb Transportation Advantage - Phase 1 Flood Routing Input Parameters November 12, 1999			
**************************************	*****	****	
Name: OUT1 Base Flow(cfs): 0 Group: POST Length(ft): 0 Comment:	Init Stage(ft): 74 Warn Stage(ft): 74.5		
Time(hrs) Stage(ft)	1	BOUNDARY CONE	S MUTTIC
0 74 12 74.5 24 74		STAGE - TIME	ASSUMPTION
Name: POND1 Base Flow(cfs): 0 Group: POST Length(ft): 0 Comment: PHASE 1 POND	Init Stage(ft): 74.5 Warn Stage(ft): 78		
Stage(ft) Area(ac)			
74.5 0.3239 75 0.3473		POND 1	
76 0.396 77 0.447 78 0.5002		STAGE - ARE	A

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 61 of 158

Stage-Storage Calculations

			Average	Depth	Volume	Volume	Volume
Stage, ft.	Area, sf	Area, acres	Area, sf	Incr., ft	Incr., cf	Accum., cf	Accum., af
Detention Pond Attenuatio	n Volume:						
78.0	21,790	0.5002	20,630	1.00	20,630	62,488	1.4345
77.0	19,470	0.4470	18,360	1.00	18,360	41,858	0.9609
76.0	17,249	0.3960	16,190	1.00	16,190	23,499	0.5395
75.0	15,130	0.3473	14,619	0.50	7,309	7,309	0.1678
74.5	14,107	0.3239	-	-	-	-	-
Detention Pond Permanen	t Pool Volume	n:					
74.5	14,107	0.3239	13,592	0.50	6,796	41,320	0.9486
74.0	13,077	0.3002	12,104	1.00	12,104	34,524	0.7926
73.0	11,131	0.2555	10,236	1.00	10,236	22,420	0.5147
72.0	9,340	0.2144	8,522	1.00	8,522	12,184	0.2797
71.0	7,704	0.1769	7,324	0.50	3,662	3,662	0.0841
70.5	6,944	0.1594	-		*	· -	-

Water Quality & Permanent Pool Calculations:

Total Impervious Area: Water Quality Volume:

sf 0.50 inches runoff from impervious area

inches/impervious acre (JCC BMP Point System, Table 1) Permanent Pool Volume: 2.00

98,886

4,120

16,481

Required Water Quality Volume: Required Permanent Pool Volume:

0.0946 ac ft cſ 0.3784 ac fi cf

Downstream Channel Erosion Control Volume:

Runoff Volume from 1 yr 24 hr Storm Event: (From SCS Unit Hydrographs)

28,001	cf
0.6428	acre feet

(Kerplunk Method)

Orifice Configurations:

	<u>WQ Volume</u>	· <u>1</u>	yr - 24 hr Volu	me
Volume:	4,138 c	ſ	28,001	cf
Brim Drawdown Time:	30 h	nrs	24	hrs
Average Rate of Discharge:	138 c	:f/hr	1,167	cf/hr
	0.04 q	fs	0.32	cfs
Initial Orifice Diameter:	1.969 li	nches	3.651	inches
Invert Elevation:	74.50 fi	ì	74.50	ſì
Design Orifice Coefficient:	0.60		0.60	
Orifice Centerline Elevation:	74.582 f	ì	74.652	ft
Pond Volume at Centerline:	1,199 q	ſ	2,224	cf
Adjusted Volume:	5,337 c	ſ	30,225	cf
Adjusted Stage:	74.87 f	1	76.37	ſì
Depth:	0.28 f	ì	1.71	ſ
Initial Elev of Water Surface:	74.87 f	7	76.37	ſì
Final Elev of Water Surface:	74.58 f	ì	74.65	ſt
Average Depth:	0.14 f	1	0.86	fi
Orifice Area:	0.0212 s	ſ	0.0727	sſ
Orifice Diameter:	0.1641 fl	1	0.3042	ft
	1.969 ii	nches	3.651	inches
	Orifice Diam	eter Used:	3.625	inches

The Haskell Company 111 Riverside Avenue Jacksonville, FL 32231-4100 CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 62 of 158

SECTION F STORM SEWER DESIGN TABULATIONS

i and

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 63 of 158

PROJECT: WILLIAMSBURG TRANSPORTATION ADVANTAGE

1

CLIENT: ANHEUSER BUSCH

OF SHEET: 1

NEED FOR 10-YEAR FUENT.

JOB NUMBER: 321 BY: DATE: 11/15

JW.

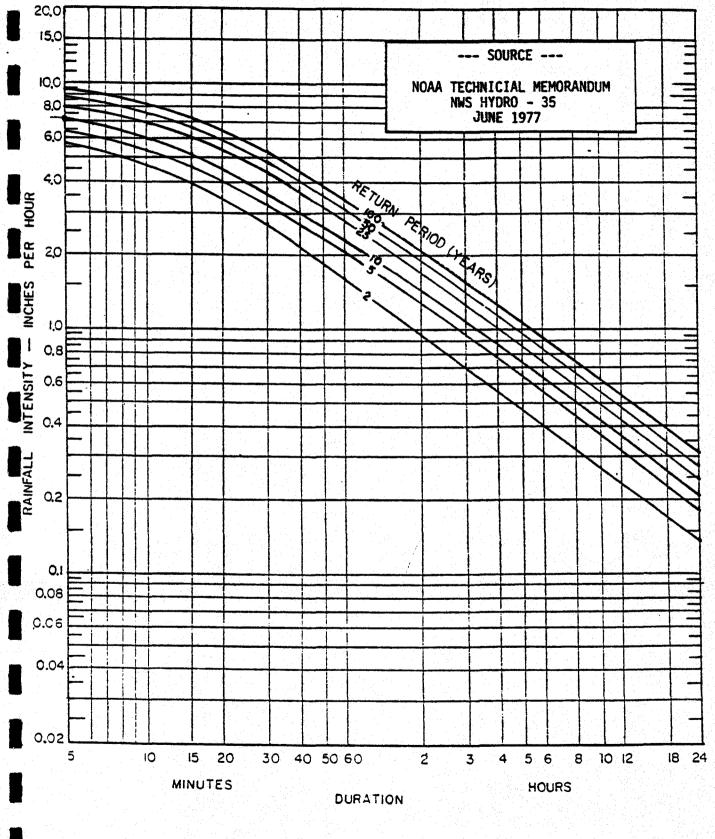
1 2 0.00 0.00 0.00 0.00 0.00 1.26 1.61 2 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.61 1.61 3 4 0.00 0.00 0.00 0.00 0.00 0.00	THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD THUD	awit Lannu min. n		TIME OF CONCENTRATION	In/hr in/hr in/hr	Cfs 2.36	TENGTH T	Diameter Diameter	MANNINGS 'n'	R CROSS-SECTIONAL AREA		INLET/GRATE ELEVATION	QNB NB440 March States	gna samoj ft-msi 76.84	TI L	SLOPE	fps	2.36
0.35 0.35 1 2 0.00 0.00 0.00 0.00 0.00 0.00 1.26 1.61 1.26 1.61 2 3 0.00 0.00 0.00 0.00 1.61 1.61 3 4 0.00 0.00 0.00 0.00 0.00 0.00	5 0.33 0 0.00 0.33 0 0.00 0.133 1 1.53 0.00 1 1.53 0.00						Maintine Con			si	ft	ft-msi		7				
1 2 0.00 0.00 0.00 0.00 0.00 0.00 1.26 1.61 1.26 1.61 2 3 0.00 0.00 0.00 0.00 0.00 1.61 1.61 1.61 3 4 0.00 0.00 0.00	0 0.00 0.33 0 0.00 ////////////////////////////////////	5.00 1	1.25	5.00	7.10~	2.36	144	15					77.09	76.94	0.05	~~~	•	2.26
1 2 0.00 0.00 0.00 0.00 0.00 0.00 1.26 1.61 1.26 1.61 2 3 0.00 0.00 0.00 0.00 0.00 1.61 1.61 1.61 3 4 0.00 0.00 0.00	0 0.00 0.33 0 0.00 ////////////////////////////////////	5.00 √ 1	1.25	5.00	7.10~	2.36	144	15					77.09	76 94	0.05			2 24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0.00 1 1.53 0 0.00 1.53	5.00 4 1	1.25 ////////////////////////////////////	5.00	7.10~]	2.36	144	15.			annann	uuuuuuuu		Announ many minung and	0.25	0.173	1.92	2.39 2000
1.26 1.61 3 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.00 4 0.00 0.00 0.00 0.00 0.00	1 1.53 0 0.00 1.53						ymm mm	annin Mins	0.013	1.23	0.31	78.00	74.75	74.41	0.34			
2 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.00 0.00 3 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 1.53												73.50	73.16	0.34	0.236	2.56 3.36	3.14
0.00 / 0.00 0.00 / 1.61 4 0.00 0.00 0.00 / 0.00		5.00 1	1.07	6.25	6.90	10.55	216,	24	0.013	3.14	0.50	77.25	20.16	19.76	0.40		3.35	10.88 MIMMM
0.00 1.61 4 0.00 0.00 0.00 (0.00	0.00												72.41	a 71.94	0.47	0.218	3.36	10.55
4 0.00 0.00 0.00 0.00													76.61		0.49	0.228	3.16	9.94
0.00 / 0.00		5.00 1	1.14	7.32	6.50 J	9.94	216 🗸	24	0.013	3.14	0.50	79.10	20.04	19.76	0.28		minin	MANNIN M
									MANA A				71.94	₹ 71.46	0.48	0.222	3.39	10.66
0.66 2.27	2.16												76.11	75.73	0.39	0.243	2.77	13.59
5 0.00 0.00	0.00 2.16	5.00 / 0	0.96	8.46	6.30	13.59	160	30 🗸	0.013	4.91	0.63	77.25	19.76	19.40	0.36			MMMM
0.00 0.00	0.00												, 70.96	70.73	0.23	0.144	3.17	15.55
0.00 2.27	2.16												75.73	75.50	0.23	0.939	2.68 [.]	13.15
		5.00 🗸 0	0.15	9.42	6.10 J	13.15	24 🗸	30 🗸	-0.013	4.91	0.63	79.00 ∖	73.23	73.17	0.06			
0.00 0.00	0.00												70.73	70.67	0.06	0.250	4.18	20.51

STORM COMPS OK

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 64 of 158

n.

Fig. 1.5.1.7


NORFOLK, VA.

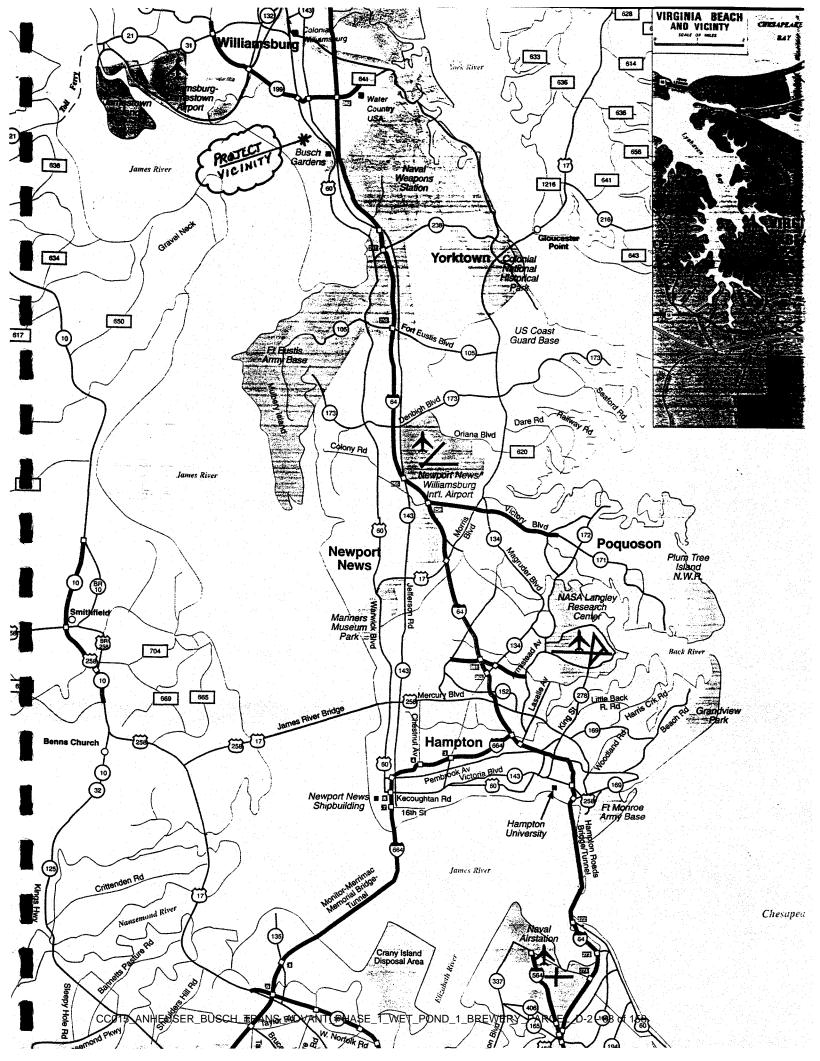
4 - 1965 etc.

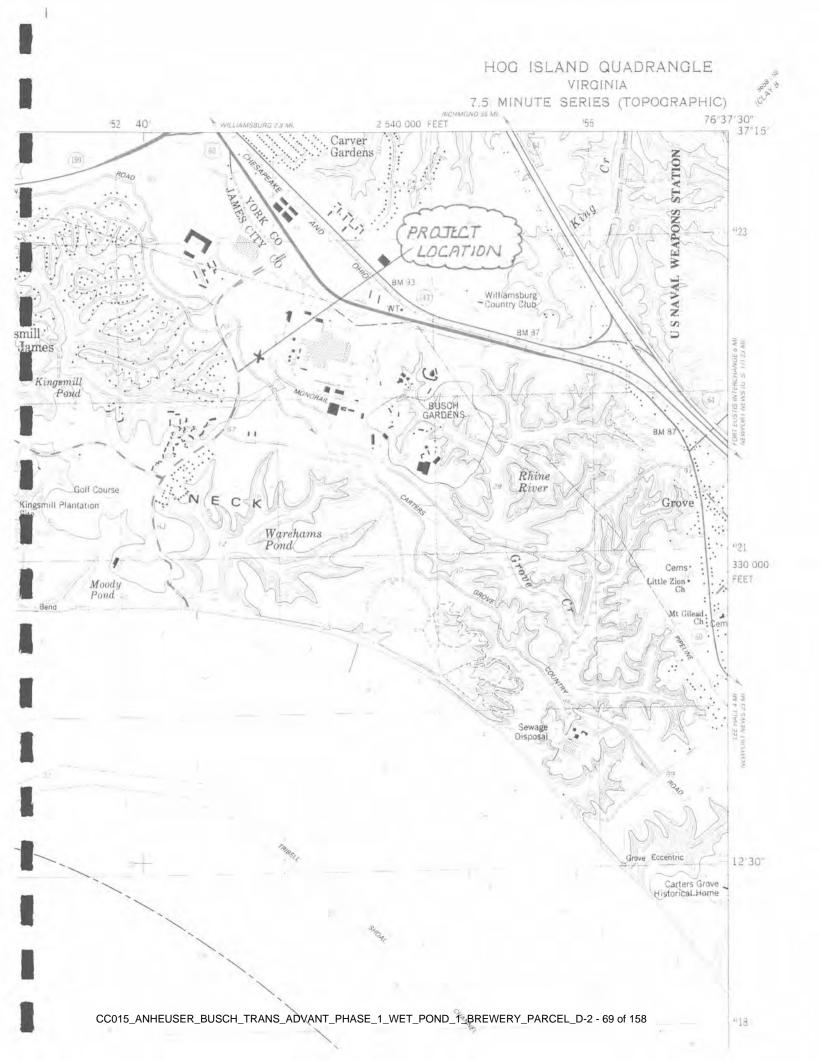
e din

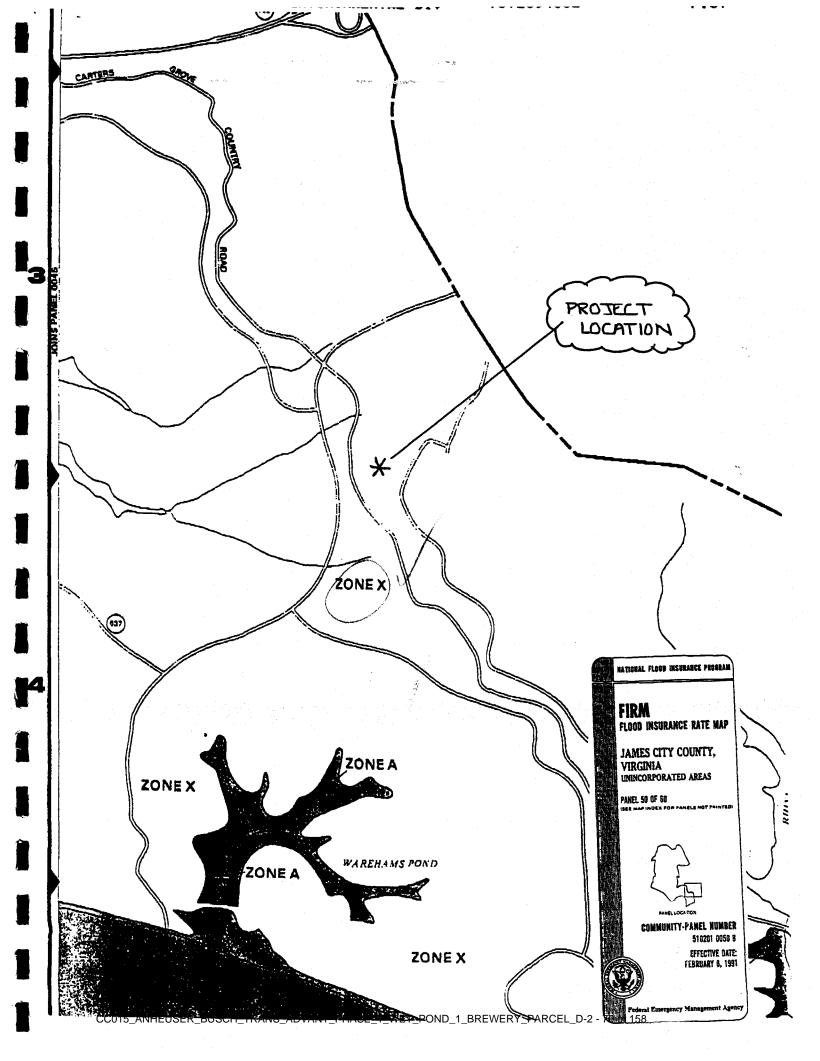
Jank and States

1-19

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 65 of 158

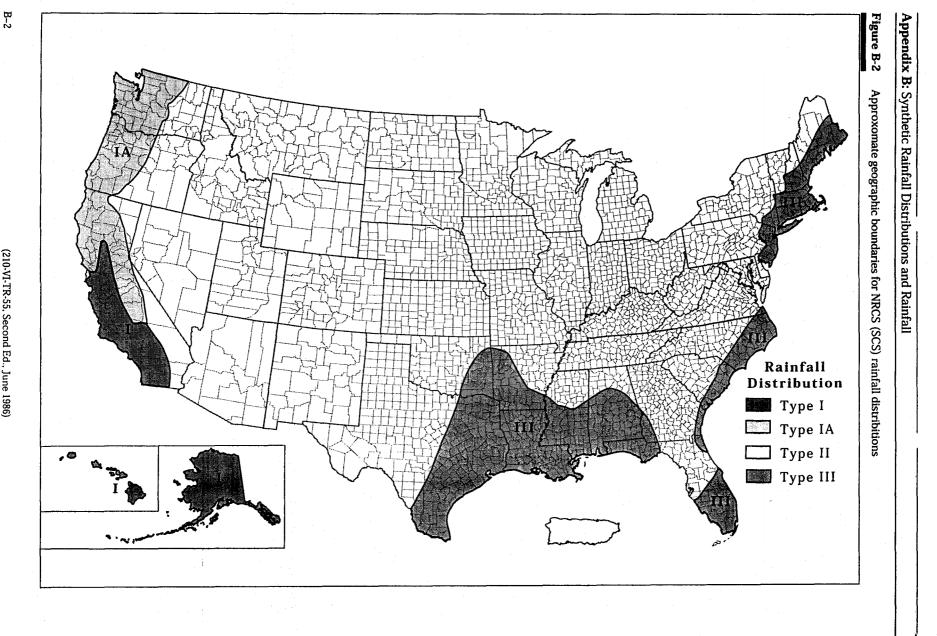

ARCHI	IE HASKELL COMPA		Job No. 293	By WS Dat	e <u> - -97 Sheet </u> of
	2.4	'- 30" RCP & 0.	4-).		
	MES TR-LA	und 1917 ann 2918 Nach an Martina ann an an Anna ann an Anna an		TotAL	
		- 160 - 30" RCP C 0.14%		e de la constante de la constan La constante de la constante de	44' - 15" RCP C 0:23 %
	578-4 11.96 	216'- 24"R C 0.22"/			5TR-1 BLO CB1 (0.35Ac)
provention of the second se	CB3 (0.66 n e c = 0.9	s STR		(1.26 AC) @ C-0.95	e c= 4 95
STR	DESC	nor		INV. ELD	E
св 1 (STR-1)	N.D.O.T. STO. DROP INLET	18.00		73 50	
CBZ (STR-2)	V.D.D.T. ST.D. PRECAST TOP (T-DI-1) W/ STD. BASE B.1 OR V.D.OT STD. DROP INLET.	TI. 25	73.16	72.41	
MH I STR-3)	V.D.O.T STD. PRECAST MANHULE	79. 10	71.94	11.74	
CB3 5TR-4)	V.D.O.T. STD. PRECAST TOP (T.DI.I) W/ STD. BASE B-1	25.רך	0.4		- 70.96
	ang na naki kapanya sa pananya anaka jawa na panjana na panjanya na sanja pananganana panjang ng ng ng ng ng ng				


CONTENTS:


- PROJECT VICINITY MAP
- **U.S.G.S. QUAD MAP**
- F.E.M.A. MAP
- TR-55 APPENDIX B RAINFALL DISTRIBUTION & RAINFALL MAPS FOR 2, 10 & 100 YEAR STORM EVENTS
- TR-55 TABLE 2-2 RUNOFF CURVE NUMBERS
- SCS SOIL SURVEY MAP W/ RELATED SOIL INFORMATION
- **SOIL BORING LOG**

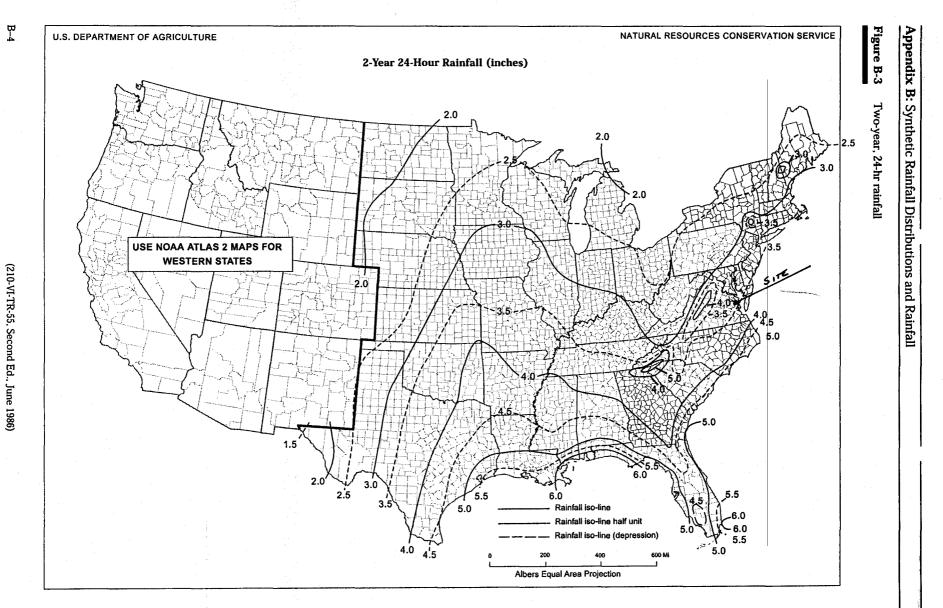
APPENDIX

STORMWATER ANALYSIS ANHEUSER-BUSCH TRANSPORTATION ADVANTAGE WILLIAMSBURG, VA

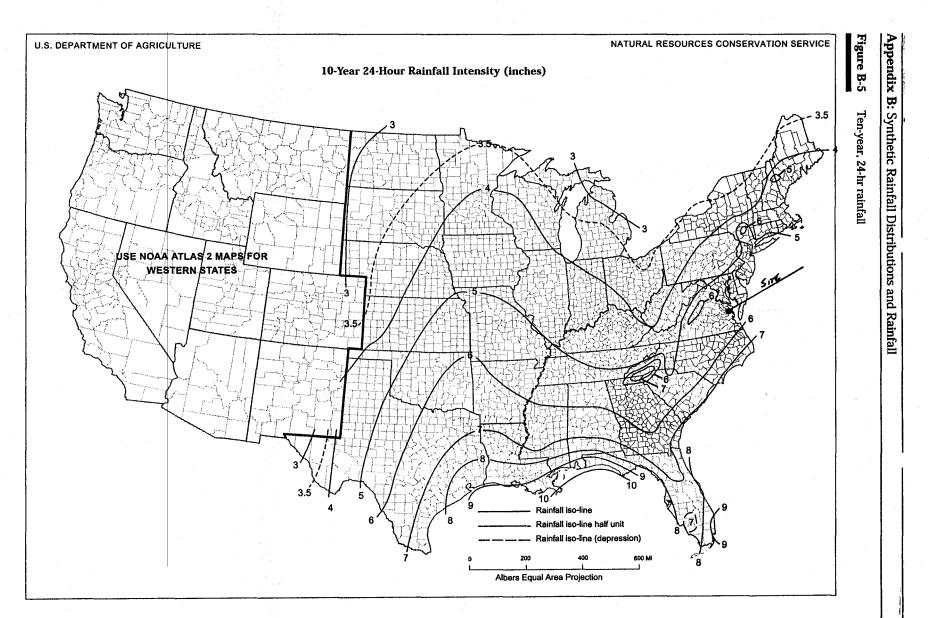

Stepp, Joe W.

From: Sent: To: Subject: scottt@james-city.va.us Tuesday, November 09, 1999 9:11 AM jwstepp@thehaskellco.com JCC 24-hour Rainfall

At your request, the following are the 24-hour rainfall depth values traditionally used for the SCS Type II, 24-hour storm duration in James City County.

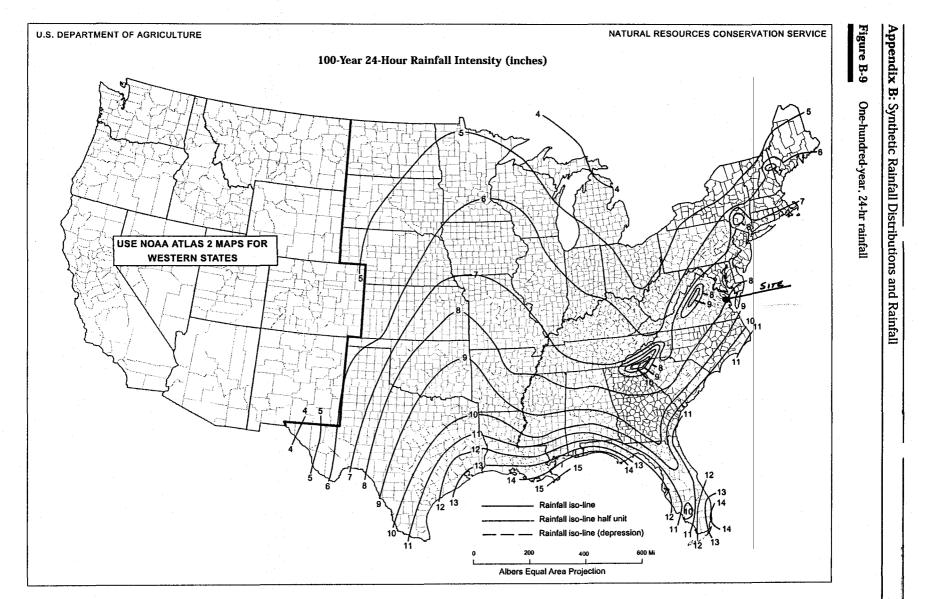

Î.	Frequency	P, r	ainfall (inches)	
	1-year	2.8	• • •	
	2-year	3.5		
ŀ	5-year	4.7		4
	10-year	5.8		,
ľ	25-year	6.4		
	50-year	7.2		
•	100-year	8.0		

Reference the new Virginia Stormwater Management Handbook (1999), Volume II, Chapter 4, Appendix 4B



CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 72 of 158

(210-VI-TR-55, Second Ed., June 1986)


CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 73 of 158

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 74 of 158

B-6

(210-VI-TR-55, Second Ed., June 1986)

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 75 of 158

(210-VI-TR-55, Second Ed., June 1986)

B-9

Chapter 2

Estimating runoff

Technical Release 55 Urban Hydrology for Smail Watersheds

Table 2-2a

Runoff curve numbers for urban areas \mathcal{V}

Cover type and hydrologic condition Fully developed urban areas (vegetation established)	Average perce impervious area		В	С	-
			В	<u> </u>	-
Fully developed urban areas (vegetation established)				<u> </u>	D
Open space (lawns, parks, golf courses, cemeteries, etc.) 3:	• •				
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	. 74	80
mpervious areas:			<i>f</i>	ć	
Paved parking lots, roofs, driveways, etc.		•	~	-	
(excluding right-of-way)		98	(98) 🗲	⇒ (98)	98
Streets and roads:			0		
Paved; curbs and storm sewers (excluding					
right-of-way)	•	98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) #		63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Jrban districts:					
Commercial and business		89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)		77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres		46	65	77	82
	4		•-		
Developing urban areas				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
lewly graded areas					
(pervious areas only, no vegetation) 5/		86	91	94	
dle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Technical Release 55 Urban Hydrology for Small Watersheds

Table 2-2c

Runoff curve numbers for other agricultural lands \mathcal{V}

Cover description			Curve nui • hydrologic	nbers for soil group - ·	
Cover type	Hydrologic condition	A	В	С	D
Pasture, grassland, or range—continuous	Poor	68	79	86	89
forage for grazing . 2	Fair	49	69	79	84
	Good	39	61	74	80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	—	30	58	71	78
Brushbrush-weed-grass mixture with brush	Poor	48	67	77	83
the major element. \mathcal{Y}	Fair	35	56	70	77
·	Good	30 4/	48	65	73
Woods—grass combination (orchard	Poor	57	73	82	86
or tree farm). 5/	Fair	43	65	76	82
	Good	32	58	72	79
Woods. 🕼	Poor	45	66	77	83
	Fair	36	60	73	79
	Good	30 <i>4</i> /	(55) ←	70	77
Farmsteads—buildings, lanes, driveways, and surrounding lots.	·	59	74	82	86

¹ Average runoff condition, and I_a = 0.2S. ² *Poor:* <50%) ground cover or bea

Poor: <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

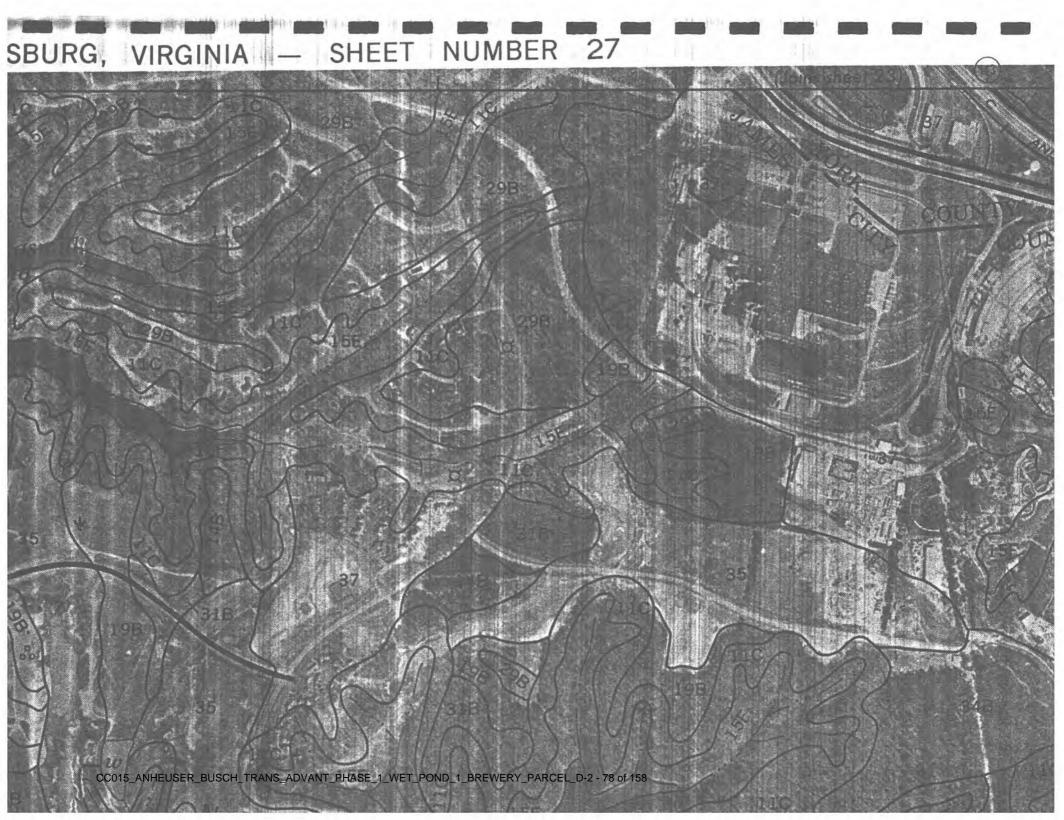
Good: >75% ground cover and lightly or only occasionally grazed.

Poor: <50% ground cover.

3

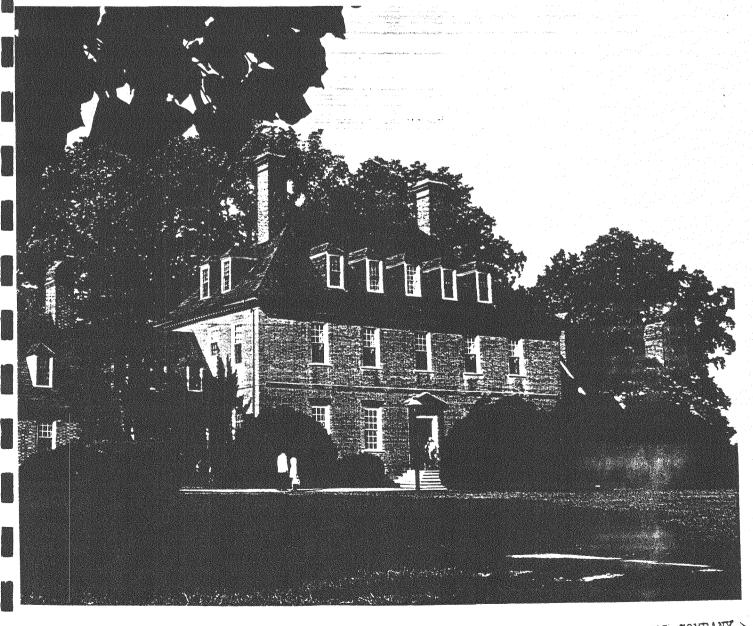
Fair: 50 to 75% ground cover.

Good: >75% ground cover.


⁴ Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.


Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Soil Conservation Service In Cooperation with Virginia Polytechnic Institute and State University Soil Survey of James City and York Counties and the City of Williamsburg Virginia

THE HASKELL COMPANY CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_02:7930158 RESOURCE CENTER

Slagle soils are adjacent to drainageways and in depressions. Also included are small areas of soils in York County that are east of U.S. Highway 17 and that have a seasonal high water table at a depth of 4 to 6 feet. Included soils make up about 20 percent of this unit.

The permeability of this Kempsville soil is moderate, and available water capacity is moderate. Surface runoff is medium. The erosion hazard is moderate. The surface layer is friable and easily tilled. The subsoil has low shrink-swell potential. The root zone extends to a depth of 60 inches or more. The soil is low in organic matter content and natural fertility. It is very strongly acid or strongly acid, but reaction in the surface layer varies because of local liming practices.

In most areas this soil is in woodland. In some areas it is farmed, and in some areas it is in community developments.

This soil is well suited to cultivated crops. Crops respond well to lime and fertilizer. Conservation tillage, using cover crops and grasses and legumes in the cropping system, and use of crop residue help to control runoff and erosion, maintain organic matter content and tilth, reduce crusting, and increase water infiltration.

This soil is well suited to pasture and hay crops. Establishing and maintaining a mixture of grasses and legumes, using proper stocking rates, rotational grazing of pasture, deferred grazing, and use of lime and fertilizer help to increase the carrying capacity of pastures. Overgrazing and grazing when the soil is too wet compact the surface layer and damage the stands of grasses and legumes. This results in reduced yields and increased runoff and erosion.

The potential for trees on this soil is moderately high, especially for loblolly pine, yellow-poplar, sweetgum, and southern red oak. The wooded areas are managed for both pine and hardwoods. Seeds and seedlings grow well if competing vegetation is controlled.

The moderate permeability and slope are the main limitations of this soil for community development. The permeability of the subsoil and slope limit use of the soil as a site for septic tank absorption fields, sewage lagoons, and small commercial buildings.

This soil is in capability subclass lle.

19B—Kempsville-Emporia fine sandy loams, 2 to 6 percent slopes. This complex consists of deep, gently sloping, well drained soils that are so intermingled that it is not practical to separate them at the scale used in mapping. Areas of this complex are on medium to broad upland ridges and side slopes. Slopes are commonly smooth and range from 400 to 1,000 feet long. Areas commonly are elongated or irregularly oval and range from about 2 to 30 acres.

Of the total acreage of this map unit, about 50 percent is Kempsville soil, 30 percent is Emporia soil, and 20 percent is other soils. Typically, the surface layer of this Kempsville soil is dark grayish brown fine sandy loam about 4 inches thick. The subsurface layer is light yellowish brown fine sandy loam 10 inches thick. The subsoil extends to a depth of 55 inches. It is yellowish brown and strong brown fine sandy ioam and sandy clay loam to a depth of 32 inches. Below this, the subsoil is mottled fine sandy loam that is somewhat firm and compact over yellowish brown sandy clay loam. The substratum is yellowish brown fine sandy loam to a depth of at least 68 inches.

Typically, the surface layer of this Emporia soil is dark grayish brown fine sandy loam about 4 inches thick. The subsurface layer is pale brown loam 9 inches thick. The subsoil extends to a depth of 58 inches. It is yellowish brown loam with mostly strong brown mottles in the upper part, yellowish brown, firm sandy clay loam with strong brown and gray mottles in the middle part, and mottled gray and brown firm sandy clay loam in the lower part. The substratum is variegated gray, brown, and red firm sandy clay loam to a depth of at least 75 inches.

Included with these soils in mapping are small areas of well drained Caroline, Kenansville, Suffolk, and Uchee soils and moderately well drained Slagle soils. The Caroline soils are in slightly lower areas; the Kenansville and Suffolk soils are on small knolls; and the Slagle soils are adjacent to drainageways and in depressions.

The permeability of the Kempsville soil is moderate. In the Emporia soil, permeability is moderate in the upper part of the subsoil and moderately slow to slow in the lower part. The available water capacity is moderate for both soils. Surface runoff is medium. The erosion hazard is moderate. The surface layer is friable and is easily tilled throughout a wide range of moisture conditions. The subsoil of the Kempsville soil has low shrink-swell potential, and that of the Emporia soil has moderate shrink-swell potential. The root zone extends to a depth of 60 inches or more, but is somewhat restricted in the Emporia soil by a firm, compact layer at a depth of about 37 inches. Both soils are low in organic matter content and natural fertility. Both soils are very strongly acid or strongly acid, but reaction in the surface layer varies because of local liming practices. The Emporia soil has a perched high water table at a depth of 3 to 4 1/2 feet in winter and spring.

In most areas these soils are in woodland. In some areas they are farmed, and in some areas they are in pasture. A small acreage is in urban development.

The soils in this complex are well suited to cultivated crops. Crops respond well to lime and fertilizer. Conservation tillage, using cover crops and grasses and legumes in the cropping system, and use of crop residue help to control runoff and erosion, maintain organic matter content and tilth, reduce crusting, and increase water infiltration.

This complex is well suited to pasture and hay. Establishing and maintaining a mixture of grasses and legumes, using proper stocking rates, rotational grazing of pasture, deferred grazing, and use of lime and fertilizer help to increase the carrying capacity of pastures. Overgrazing and grazing when the soil is too wet compact the surface layer and increase runoff and erosion.

The potential for trees on this complex is moderately high, especially for loblolly pine, yellow-poplar, and oak. Seeds and seedlings grow well if competing vegetation is controlled. The surface layer of the Emporia soil is often soft during wet periods and, consequently, will not support heavy timber equipment.

The low strength, moderate shrink-swell potential, and seasonal high water table of the Emporia soil and the slow permeability of the Emporia subsoil and moderate permeability of the Kempsville subsoil are the main limitations for community development. The low strength and moderate shrink-swell potential limit use of the Emporia soil as a building site, and the seasonal perched high water table limits excavation. The slow permeability and the water table also limit use of the Emporia soil for septic tank absorption fields. The low strength of the Emporia subsoil also limits use as a subgrade material for roads and streets.

The soils in this complex are in capability subclass Ile.

20B—Kenansville loamy fine sand, 2 to 6 percent slopes. This soil is deep, gently sloping, and well drained. It is on upland ridges. Slopes are smooth and are 150 to 500 feet long. Areas commonly are long and narrow or irregularly oval. They range from about 2 to 40 acres.

Typically, the surface layer of this soil is dark grayish brown loamy fine sand about 2 inches thick. The subsurface layer is light yellowish brown loamy fine sand 23 inches thick. The subsoil is yellowish brown and strong brown fine sandy loam 18 inches thick. The substratum is yellowish brown loamy fine sand with lamellae of brown fine sandy loam to a depth of at least 78 inches.

Included with this soil in mapping are small areas of moderately well drained Slagle soils and well drained Kempsville, Suffolk, and Uchee soils. Slagle soils are in slight depressions, generally adjacent to drainageways. Suffolk, Kempsville, and Uchee soils commonly are throughout the unit. Also included in mapping are small areas that are sandy throughout. Included soils make up about 15 percent of the unit.

The permeability of this Kenansville soil is moderately rapid, and available water capacity is low. Surface runoff is slow. The hazard of water erosion is slight, but the hazard of wind erosion is moderate. The surface layer is friable and easily tilled throughout a wide range of moisture conditions. The subsoil has low shrink-swell potential. The root zone extends to a depth of 60 inches or more. The soil is low in organic matter content and natural fertility. It commonly is very strongly acid or strongly acid, but reaction in the surface layer varies because of local liming practices. A high water table is at a depth of 4 to 6 feet in winter and spring.

In most areas this soil is farmed, and in a few areas it is in woodland.

This soil is well suited to cultivated crops. It is droughty during the growing season, however, and the low available water capacity limits crop response to lime and fertilizer. Conservation tillage, using cover crops and grasses and legumes in the cropping system, and use of crop residue help to maintain organic matter content and hold moisture in the soil.

This soil is moderately well suited to pasture and hay. Establishing and maintaining a mixture of grasses and legumes, using proper stocking rates, rotational grazing of pasture, deferred grazing, and use of lime and fertilizer help to increase the carrying capacity of pastures. Overgrazing cuts the soft surface layer and damages the stands of grasses and legumes.

The potential for trees on this soil is moderately high, especially for loblolly pine, but the survival of seeds and seedlings is limited by drought during the growing season.

The moderately rapid permeability, the sandy texture, and the seasonal high water table are the main limitations for community development. Because of the moderately rapid permeability and the seasonal high water table, seepage of effluent into ground water and nearby streams is a pollution hazard if this soil is used for septic tank absorption fields and sanitary landfills. The sandy texture limits excavation, and the surface of the soil is dusty when dry. The low available water capacity of this soil limits the growth of grasses and shrubs.

This soil is in capability subclass IIs.

21—Levy silty clay. This soil is deep, nearly level, and very poorly drained. It is on tidal marshes. Areas of this soil are irregular in shape. They range from about 3 to 100 acres. Slopes are less than 1 percent.

Typically, the surface layer of this soil is dark olive gray silty clay about 18 inches thick. The substratum is very dark gray silty clay to a depth of at least 80 inches.

Included with this soil in mapping are small areas of very poorly drained Axis, Bohicket, and Johnston soils. The Axis and Bohicket soils are throughout the unit. The Johnston soils are on the flood plains of smaller streams but are not flooded by tidal waters. Also included are areas of soil, which are in tidal marshes and have sandy layers within a depth of 60 inches. Included soils make up about 15 percent of this unit.

The permeability of this Levy soil is slow, and available water capacity is high. Surface runoff is very slow. The substratum has high shrink-swell potential. The root zone extends to a depth of 60 inches or more. The soil is high in organic matter content and medium in natural fertility. water table, seepage of effluent into ground water and nearby streams is a hazard in areas used for septic tank absorption fields or sanitary landfills. The sandy texture limits excavation, and the surface of the soil is dusty when dry. The low available water capacity of this soil limits the growth of grasses and shrubs.

This soil is in capability subclass IIIs.

29A—Slagle fine sandy loam, 0 to 2 percent slopes. This soil is deep, nearly level, and moderately well drained. It is on upland terraces and broad flat uplands and in slight depressions. Areas of this soil commonly are elongated, but some smaller areas are irregularly oval or rectangular. They range from about 2 to 80 acres.

Typically, the surface layer of this soil is dark grayish brown fine sandy loam about 4 inches thick. The subsurface layer is light yellowish brown fine sandy loam 5 inches thick. The subsoil extends to a depth of 50 inches. It is mostly mottled yellowish brown clay loam to a depth of 25 inches. Below this depth, it is mostly mottled clay loam and sandy clay loam. The substratum is mottled sandy clay loam to a depth of at least 60 inches.

Included with this soil in mapping are small areas of well drained Emporia, Kempsville, and Uchee soils; moderately well drained Izagora and Peawick soils; somewhat poorly drained Yemassee soils; and poorly drained Bethera soils. The Emporia, Kempsville, and Uchee soils are in slightly higher areas; the Izagora and Peawick soils are in similar areas; and the Yemassee and Bethera soils are in slight depressions and around drainageways. Also included are many small areas of soils that have water on the surface for brief periods after heavy or prolonged rainfall in winter and spring and soils that are similar to this Slagle soil but have a thicker surface layer. Included soils make up about 20 percent of this unit.

In this Slagle soil, permeability is moderate in the upper part of the subsoil and moderately slow or slow in the lower part. The available water capacity is moderate. Surface runoff is slow. The erosion hazard is slight. The surface layer is friable and easily tilled. The subsoil has moderate shrink-swell potential. The root zone extends to a depth of 60 inches or more. The soil is low in organic matter content and natural fertility. It ranges from extremely acid through strongly acid, but reaction in the surface layer varies because of local liming practices. A high perched water table is at a depth of 1 1/2 to 3 feet in winter and spring.

In most areas this soil is in woodland. In a few areas it is cultivated, and in a few it is in pasture.

This soil is well suited to cultivated crops. Crops respond well to lime and fertilizer, but the soil is wet and cold in spring, and wetness often interferes with tillage. Drainage helps to protect crops from damage caused by wetness. Conservation tillage, using cover crops and

THE CONTRACTOR AND AND A

grasses and legumes in the cropping system, and use of crop residue help to maintain organic matter content and tilth, reduce crusting, and increase water infiltration.

This soil is well suited to pasture and hay. Establishing and maintaining a mixture of grasses and legumes, using proper stocking rates, rotational grazing of pasture, deferred grazing, and use of lime and fertilizer help to increase the carrying capacity of pastures. Overgrazing and grazing when the soil is too wet cause compaction of the surface layer and damage the stands of grasses and legumes.

The potential for trees on this soil is high, especially for loblolly pine, oak, and sweetgum. Seeds and seedlings grow well if competing vegetation is controlled. When the soil is wet, it is soft, thus limiting the use of heavy timber equipment.

The seasonal high water table and the low strength and slow permeability of the subsoil are the main limitations of the soil for community development. The high water table and slow permeability of the subsoil limit the use of the soil as a building site or site for sanitary landfills or septic tank absorption fields and for most types of recreation. The low strength limits its use as a subgrade material for roads and streets.

This soil is in capability subclass Ilw.

29B-Slagle fine sandy loam, 2 to 6 percent slopes. This soil is deep, gently sloping, and moderately well drained. It is on terraces and side slopes on the uplands. Slopes range from about 200 to 1,000 feet long. Areas of this soil commonly are elongated, but some smaller areas are irregularly oval or rectangular. They range from about 2 to 80 acres.

Typically, the surface layer of this soil is dark grayish brown fine sandy loam about 4 inches thick. The subsurface layer is light yellowish brown fine sandy loam 5 inches thick. The subsoil extends to a depth of 50 inches. It is mostly mottled yellowish brown clay loam to a depth of 25 inches. Below this depth, the subsoil is mostly mottled clay loam and sandy clay loam. The substratum is mottled sandy clay loam to a depth of at least 60 inches.

Included with this soil in mapping are small areas of well drained Emporia, Kempsville, and Uchee soils and moderately well drained Izagora and Peawick soils. The Emporia, Kempsville, and Uchee soils are in slightly higher areas, and the Izagora and Peawick soils are in similar areas throughout the unit. Also included are small areas that are ponded for brief periods after heavy or prolonged rainfall during winter and spring. Included soils make up about 20 percent of this unit.

In this Slagle soil, permeability is moderate in the upper part of the subsoil and moderately slow or slow in the lower part. The available water capacity is moderate. Surface runoff is medium. The erosion hazard is moderate. The surface layer is friable and easily tilled. The subsoil has moderate shrink-swell potential. The root zone extends to a depth of 60 inches or more. The soil is low in organic matter content and natural fertility. It ranges from extremely acid through strongly acid, but reaction in the surface layer varies because of local liming practices. A high perched water table is at a depth of 1 1/2 to 3 feet in winter and spring.

In most areas this soil is in woodland. In a few areas it is cultivated, and in a few it is in pasture.

This soil is well suited to cultivated crops. Crops respond well to lime and fertilizer, but the soil is wet and cold in spring, and wetness often interferes with tillage. Drainage helps to protect crops from damage caused by wetness. Conservation tillage, using cover crops and grasses and legumes in the cropping system, and use of crop residue help to maintain organic matter content and tilth, reduce surface crusting, increase water infiltration, and reduce erosion.

This soil is well suited to pasture and hay. Establishing and maintaining a mixture of grasses and legumes, using proper stocking rates, rotational grazing of pasture, deferred grazing, and use of lime and fertilizer help to increase the carrying capacity of pastures. Overgrazing and grazing when the soil is too wet cause compaction of the surface layer and damage the stands of grasses and legumes.

The potential for trees on this soil is high, especially for loblolly pine, oak, and sweetgum. Seeds and seedlings grow well if competing vegetation is controlled. When the soil is wet, it is soft, thus limiting the use of heavy timber equipment.

The seasonal high water table and the low strength and slow permeability of the subsoil are the main limitations of the soil for community development. The high water table and slow permeability of the subsoil limit the use of the soil as a building site or site for sanitary landfills or septic tank absorption fields and for most types of recreation. The low strength limits its use as a subgrade material for roads and streets.

This soil is in capability subclass IIe.

30—State fine sandy loam. This soil is deep, nearly level, and well drained. It is on low-lying terraces. Areas range from about 3 to 25 acres. Slopes range from 0 to 3 percent.

Typically, the surface layer of this soil is very dark grayish brown fine sandy loam about 5 inches thick. The subsoil is mostly dark yellowish brown fine sandy loam and dark brown loam, clay loam, and sandy clay loam 47 inches thick. The substratum is dark brown fine sandy loam to a depth of at least 97 inches.

Included with this soil in mapping are small areas of well drained Pamunkey soils, moderately well drained Altavista, Dogue, and Tetotum soils, and somewhat poorly drained Augusta soils. The Pamunkey soils are in slightly higher areas, the Altavista, Dogue, and Tetotum soils are in similar areas, and the Augusta soils are in slightly lower areas and in slight depressions throughout the unit. Included soils make up about 15 percent of the unit.

The permeability of this State soil is moderate, and available water capacity is moderate. Surface runoff is medium. The erosion hazard is slight. The surface layer is friable and easily tilled throughout a wide range of moisture conditions. The subsoil has low shrink-swell potential. The root zone extends to a depth of 60 inches or more. The soil is low in organic matter content and natural fertility. It commonly is very strongly acid or strongly acid in the surface layer and subsoil, but reaction in the surface layer varies because of local liming practices. The substratum ranges from very strongly acid through medium acid. A high water table is at a depth of 4 to 6 feet in winter and spring.

In most areas this soil is farmed, but in some areas it is in woodland.

This soil is well suited to cultivated crops. Crops respond well to lime and fertilizer. Conservation tillage, using cover crops and grasses and legumes in the cropping system, and use of crop residue help to maintain organic matter content, reduce crusting, and increase water infiltration.

This soil is well suited to pasture and hay crops. Establishing and maintaining a mixture of grasses and legumes, using proper stocking rates, rotational grazing of pasture, deferred grazing, and use of lime and fertilizer help to increase the carrying capacity of pastures. Overgrazing causes compaction of the surface layer and reduces the stands of grasses and legumes.

The productivity for trees on this soil is very high, especially for loblolly pine, yellow-poplar, sweetgum, and oak. Seeds and seedlings grow well if competing vegetation is controlled.

Moderate permeability and the seasonal high water table are the main limitations if the soil is used for community development. The moderate permeability may cause effluent to seep into the ground water and nearby streams if this soil is used for septic tank absorption fields or sanitary landfills.

This soil is in capability class I.

31B—Suffolk fine sandy loam, 2 to 6 percent slopes. This soil is deep, gently sloping, and well drained. It is in long, narrow areas on broad uplands and on side slopes next to drainageways. Areas range from about 3 to 50 acres.

Typically, the surface layer of this soil is very dark grayish brown fine sandy loam about 4 inches thick. The subsurface layer is yellowish brown fine sandy loam 10 inches thick. The subsoil is strong brown fine sandy loam and sandy clay loam 26 inches thick. The substratum is brown loamy fine sand to a depth of at least 64 inches.

Included with this soil in mapping are small areas of well drained Emporia, Kempsville, and Kenansville soils and moderately well drained Slagle soils. The Kempsville and Kenansville soils are throughout the unit. The Udorthents generally are not suited to farming because the topsoil has been removed. The potential for trees on this soil material is low. These soils are limited for most types of community development and recreation uses. An onsite investigation is needed to determine the suitability and limitations of the soils for any given use.

The soils in this map unit are not assigned to a capability subclass.

36—Udorthents-Dumps complex. This complex consists of shallow to deep, excessively drained to moderately well drained soil material in areas that were disturbed during excavation. The excavations are partly filled with garbage, trees, stumps, metal, fly ash, or dredgings. Udorthents and Dumps are so intermingled that it is not practical to separate them at the scale used in mapping. Areas of this complex are rectangular or irregularly oval and range from 3 to 80 acres. Slopes range from 0 to 25 percent.

Of the total acreage of this map unit, about 50 percent is Udorthents, 25 percent is Dumps, and 25 percent is other soils.

Included in mapping are small areas of undisturbed well drained Caroline, Kempsville, Suffolk, and Uchee soils; moderately well drained Slagle and Izagora soils; and poorly drained Bethera soils. Also included are small bodies of water, sanitary landfills, and quarries where the soil material is neutral to moderately alkaline.

The permeability of the Udorthents in this complex ranges from moderately rapid to slow. The available water capacity ranges from low to high, depending on texture and gravel content of the material. Surface runoff ranges from very slow to rapid. The erosion hazard is slight to severe. The soil materials commonly range from extremely acid through strongly acid.

The soils in this complex are generally not suited to farming because the topsoil has been removed and they contain miscellaneous nonsoil materials. The potential for trees on this soil material is low.

The soils in this complex are limited for most types of community development and recreation. Onsite investigation is needed to determine the suitability and limitations of the unit for any given use.

The soils in this map unit are not assigned to a capability subclass.

37—Urban land. This map unit consists of areas where more than 85 percent of the surface is covered by asphalt, concrete, buildings, or other impervious surfaces. Examples are parking lots, shopping centers, and industrial parks. These areas are throughout the survey area, but the largest are near downtown business districts and along main roads. The areas range from about 2 to 100 acres. Slopes range from 0 to 15 percent.

Included with this unit in mapping are areas of undisturbed soils, commonly well drained Emporia soils, and moderately well drained Slagle soils. Also included in this unit are small areas of most soils in the survey area. These soils are between streets and sidewalks, in yards, and in traffic islands. These areas generally are less than an acre. They make up about 15 percent of the unit.

Onsite investigation is needed to determine the suitability and limitations of the soils in this unit for any use.

The soils in this map unit are not assigned to a capability subclass.

38—Yemassee fine sandy loam. This soil is deep, nearly level, and somewhat poorly drained. It is on broad low-lying uplands. Areas of this soil are elongated or irregularly oval. They range from about 2 to 30 acres. Slopes range from 0 to 2 percent.

Typically, the surface layer of this soil is dark grayish brown fine sandy loam about 4 inches thick. The subsurface layer is light yellowish brown fine sandy loam 7 inches thick. The subsoil extends to a depth of 51 inches. It is mottled light yellowish brown and light olive brown sandy clay loam to a depth of 20 inches; mottled gray, yellowish brown, and strong brown sandy clay loam to a depth of 30 inches; and gray sandy clay loam to a depth of 51 inches. The substratum is gray fine sandy loam with yellowish brown mottles from 51 to at least 63 inches.

Included with this soil in mapping are small areas of moderately well drained Izagora and Slagle soils that are in slightly higher areas and poorly drained Bethera soils in lower areas and slight depressions. Included soils make up about 15 percent of the unit.

The permeability of this Yemassee soil is moderate, and available water capacity is moderate. Surface runoff is slow. The erosion hazard is slight. The surface layer is friable and easily tilled. The subsoil has low shrink-swell potential. The root zone extends to a depth of 60 inches or more. The soil is low in organic matter content and natural fertility. It commonly ranges from extremely acid through strongly acid, but reaction in the surface layer varies because of local liming practices. A high water table is at a depth of 1 foot to 1 1/2 feet in winter and early in spring.

In most areas this soil is in woodland. In a few areas it is cultivated, and in a few areas it is used for pasture and hay crops.

If adequately drained, this soil is well suited to cultivated crops. Crops respond well to lime and fertilizer. The soil is wet and cold in the spring, and wetness often interferes with tillage. Drainage helps to protect crops from damage caused by wetness. Conservation tillage, using cover crops and grasses and legumes in the cropping system, and use of crop residue help to maintain organic matter content and tilth, reduce crusting, and increase water infiltration.

If adequately drained, this soil is well suited to pasture

129

TABLE	13ENGINEERING	INDEX	rROPERTIESContinued
		THREY	LUCLEVITE?==couctured

Soil name and map symbol	Depth	USDA texture	Classif	leation	Frag- ments	Pe		e passi umber		Liquid	 Plas-
mah sampot		 	Unified		> 3 inches	4	10	40	200	limit	
1	$\frac{\ln}{\ln}$	1	i !	 	Pet					Pet	
15F# Emporia	i i	Fine sandy loam	SM. MI.	A-2, A-4, A-6	0-3	90-100	80-100	50-95	25-65	<25	NP-1
		Sandy clay loam, Sandy loam, clay loam.	SC, CL	A-2, A-4, A-6, A-7	0-2	90-100	80-100	45-95	25-70	20-50	8-3
	37-45	Sandy clay loam, clay loam, sandy clay.	SC, CL	A-2, A-4, A-6, A-7		90–100	80-100	45-95	30-80	25-50	8-3
	45-75	Stratified sandy	SM, SC, ML, CL	A-1, A-2, A-4, A-6	0-5	70-100	55-100	30-90	20-60	· <40	NP-2
l6 Izagora	0-13	Loam		: A-4	0	95-100	95-100	85-100	60-90	<30	NP-1
	13-36	Loam, clay loam, silty clay loam.		i A-4, A-6,	0	95-100	95-100	85-100	60-95	25-45	. 8-2
	36-78	Clay loam, clay	CL, CH	A-7 A-6, A-7	0	95-100	95-100	90-100	70-95	35-60	20-1
Johnston	8-49	sandy loam to		A-2, A-4 A-2, A-3	0	100 100		60-100 60-100		<35 <35	N P - N P -
	49-60	silty clay loam. Stratified sand to sandy clay loam.	SM, ML	A-2, A-4	0	100	100	50-100	25-49	< 35	NP-
8B Kempsville	0-14	Fine sandy loam	SM, SM-SC,	A-2, A-4	0-2	90-100	75-100	45-85	25-65	 <18	NP-
		Sandy loam, fine sandy loam,	ML, CL-ML SM, SC, ML, CL	A-2, A-4	0-2	90-100	80-100	50-90	30-70	<22	NP-
		loam. Sandy clay loam, loam, fine sandy	SC, CL	A-2, A-6	0-2	90-100	80-100	55-95	30-75	25-40	10-
	55-68	loam. Stratified loamy sand to sandy clay loam.	SC, SM, SM-SC	A-1, A-2, A-4, A-6		85-100	75-100	35-85	15-50	<30	NP-
9B*:											
Kempsville	0-14		SM, SM-SC, ML, CL-ML	A-2, A-4	0-2	90-100	75-100	45-85	25-65	<18	NP-
	14-20	Sandy loam, fine ;	SM, SC, ML, CL	A-2, A-4	0-2	90-100	80-100	50-90	30-70	<22	NP-
	i i	Sandy clay loam, loam, fine sandy loam.	SC, CL	A-2, A-6	0-2	90-100	80-100	55-95	30-75	25-40	10-
	55-68	Stratified loamy sand to sandy clay loam.	SC, SM, SM-SC	A-1, A-2, A-4, A-6	0-5	85-100	75-100	35-85	15-50	<30	NP-
Emporia	0-13		CL, SC,	A-2, A-4,	0-3	90-100	80-100	50-95	25-65	<25	NP-
	13-37	Sandy clay loam, ' sandy loam, clay'	SM, ML SC. CL	A-6 A-2, A-4, A-6, A-7	0-2					20-50	8-
	1	loam. Sandy clay loam, i clay loam, sandy;		A-2, A-4, A-6, A-7	0-2	90-100	80-100	45-95	30-80	25-50	8-
	58-75	clay. Stratified sandy {	SM, SC, ML, CL	A-1, A-2, A-4, A-6	0-5	70-100	55-100	30-90	20-60	<40	NP-
B enansville	25-4313	Sandy loam, fine sandy loam,	SM SM, SC, SM-SC	A-1, A-2 A-2, A-4	0 0			45-60 50-75		<25 <30	NP- NP-
	43-78	sandy clay loam. Sand, loamy sand	SP-SM, SM, SP	A-1, A-2, A-3	0	100	95-100	40-60	5-30		NF

See footnote at end of table.

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 85 of 158

17

TABLE 13.--ENGINEERING INDEX PROPERTIES--Continued

Soil name and	Depth	USDA texture	Classif		Frag- ments	i Po	ercenta: sieve	ge pass: number	-	Liquid	Plas-
map symbol			Unified	AASHTO	> 3 inches	4	10	40	200	l limit	ticit index
	In				Pct					Pct	
21 Levy	0-18	Silty clay	CL, CH, ML, MH	A-6, A-7	0	100	100	98-100	85-100	30-65	12-35
	18-80	Silty clay, clay, silty clay loam.	CL, CH,	A-6, A-7	0	100	100	98–100	85-100	35-65	15-35
22 Munden	111-48	Loamy fine sand Sandy loam, loam, sandy clay loam.	SM. SC.	A-2, A-4 A-2, A-4, A-6	0	100 100	98-100 98-100	55-85 60-95	15-45 30-75	<18 <30	NP-7 NP-15
þ	48-80	Loamy sand, fine	SM, SP-SM, SM-SC	A-2, A-3	0	100	98-100	50 -90	5-35	<18	NP-7
23 Newflat	0-8	Silt loam	SM, SC, CL-ML	A-4	0	95-100	90-100	75-95	45-90	<25	NP-8
	8-11	Loam, clay loam, silty clay loam.	CL, CH	A-6, A-7	0	95-100	90-100	85-100	65-90	30-55	12-30
	11-80	Clay loam, silty clay, clay.	CL, CH	A-7	0	95-100	90-100	85-100	70-90	40-75	15-45
24 Nimmo	1		SM, SC, SM-SC, ML	A-4	0	100	95-100	60-85	36-50	<22	NP-10
	11-36	Loam, fine sandy loam, sandy loam.	SM, SC, ML, CL	A-2, A-4, A-6	0	100	95-100	60-95	30-75	<30	NP-15
•	36-60	Loamy sand, fine	SM, SP-SM, SM-SC	A-2, A-3	0	100	95-100	50-80	5-35	<13	NP-7
25B Norfolk	0-17	Fine sandy loam	SM, SM-SC,	A-2	0	95-100	95-100	50-91	15-33	<25	NP-1
	17-39	Sandy loam, sandy clay loam, clay	SC. SM-SC.	A-2, A-4, A-6	0	95-100	91–100	70-96	30-55	20-38	4-19
	39-72	loam. Sandy clay loam, clay loam, sandy clay.	SC, SM-SC, CL, CL-ML	A-4, A-6, A-7-5	0	100	98-100	65-98	36-72	20-45	4-2
26B* Pamunkey	0-14	Sandy loam	SM, ML, SP-SM, SM-SC	A-2, A-4	0	80-100	75-100	50-85	12-55	<20	NP-7
	14-43	Sandy clay loam, clay loam, loam.	CL, SC	A-2, A-6	0-2	80-100	75-100	70-95	30-75	30-40	10-20
	43-75	Stratified sandy loam to sand.		A-1, A-2, A-3	0-5	50-100	50-95	25-70	2-35	<20	NP-6
27 Peawick	0-7	Silt loam	SM, SC, CL-ML	A-4	0	90-100	75-100	50-100	40-90	15-30	NP-8
	7-99	Clay loam, silty clay, clay.		A-6, A-7	0	90-100	75-100	70-100	70-95	35-80	12-5
28 Seabrook	0-9 9-72	Loamy fine sand Loamy fine sand, fine sand, sand.	SM, SP-SM	A-2, A-3 A-2, A-3		95-100 95-100				 	N P N P
29A, 29B Slagle	0-9	Fine sandy loam		A-2, A-4,	0-3	95-100	90-100	55-95	30-75	<35	NP-1
	9-25	Fine sandy loam, sandy clay loam,	SC, SM-SC.	A-6 A-2, A-4, A-6	0-2	95-100	90-100	65-85	35-60	20-40	5-2
	25-60	loam. Sandy clay loam, loam, clay loam.		A-4, A-6, A-7	0-2	95-100	90-100	75-95	40-75	25-50	8-3
30 State	0-11	Fine sandy loam	SM, ML, CL-ML,	 A-4 	0	95-100	95-100	65-100	40-85	<28	NP-7
	11-52	Loam, clay loam,		A-4, A-5	0	95-100	95-100	75-100	35-80	24-40	8-2
	52-97	sandy clay loam. Stratified sand to fine sandy loam.	SM, SM-SC, SP-SM	A-1, A-2, A-3, A-4		85-100	75-100	40-90	5-50	<25	NP-7

See footnote at end of table.

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 86 of 158

133

TABLE 14.--PHYSICAL AND CHEMICAL PROPERTIES OF SOILS--Continued

Soil name and map symbol	Depth	Clay	Moist bulk	Permea- bility	Available water	 Soil reaction		Shrink-swell potential		sion tors	Organi matte
	<u> </u>	1 0-6	density		capacity				К	T	1 Macce 1 1
	In	Pet	<u>G/cm3</u>	<u>In/hr</u>	<u>In/in</u>	PH	Mmhos/cm				Pct
15D* Emporia	37-54 54-75	18-35 21-40 5-40	1.35-1.45 1.45-1.60 1.45-1.60	0.2-2.0 0.06-0.6 0.06-2.0	0.10-0.16	4.5-5.5 4.5-5.5 4.5-5.5	<2 <2	Low Low Moderate Moderate	0.28	4	.5-2
ISE [#] Emporia	37-50 50-75	21-40 5-40	1.45-1.60 1.45-1.60	0.06-0.6	0.10-0.18 0.10-0.16 0.08-0.18	4.5-5.5 4.5-5.5 4.5-5.5	<2 <2	Low Low Moderate Moderate	0.28	4	.5-2
5F* Emporia	37-45	21-40	1.45-1.60	0.2-2.0	0.10 - 0.18	4.5-5.5	<2 <2	Low Low Moderate Moderate	0.28	4	.5-2
	36-78	110-301	1.10-1.201	2.0-6.0 0.6-2.0 0.06-0.2	12-0 20	'N 6_6 5	¦ <2 ′	Low Low Moderate	0.32	3	-5-2
	8-49	i 2-12i	1.55-1.75	2.0-6.0 0.6-2.0 0.6-2.0	0 02 0 07	h c c c	<2	Low Low Low	0.17	5	4-8
	20-55	18-35	1.35-1.65	2.0-6.0 2.0-6.0 0.6-2.0 0.6-2.0	0.12 - 0.18 0.12 - 0.18	4.5-5.5	<2 <2	Low Low Low	0.24	3	.5-2
i	20-55	12-24	1.30-1.40 1.30-1.45 1.35-1.65 1.30-1.60	2.0-6.0	0.10-0.16 0.12-0.18 0.12-0.18 0.08-0.15	4.5-5.5	<2 <2	Low Low Low Low	0.24	3	.5-2
i	37-58	21-40	1.35-1.45; 1.45-1.60;	0.2-2.0	0.10-0.17 0.10-0.18 0.10-0.16 0.08-0.18	4.5-5.5	<2 <2 <2	Low Low Moderate Moderate	0.28 0.28 0.20	ц	.5-2
venansviile !	25-43¦	5-18	1.50-1.70 1.30-1.50 1.50-1.70	2.0-6.0	0.04-0.10 0.10-0.15 <0.05	4.5-5.5	<2	Low Low	0.15	5	.5-2
	10-001	30-0010	0.25-1.10	0.06-0.2 0.06-0.2	0.16-0.22	4.5-6.0		High High		5	3-1
		0.101	1.20-1.35 1.20-1.35 1.35-1.55	0.0-2.0 i	0.06-0.10 0.08-0.17 0.04-0.08	4.)-).)	<2	Low Low	0.17	4	-5-1
3 Newflat	- 3 -11j.	25-401	1.20-1.30 1.25-1.35 1.30-1.50		0.10-0.17 0.12-0.19 0.10-0.19	3.6-5.0	< 2	Low Moderate High	0.37	4	.5-1
 Nimmo	11-36	8-181	1.20-1.35 1.20-1.35 1.35-1.55	0.6-2.0	0.06-0.15 0.08-0.17 0.04-0.08	3.6-5.5	<2	Low Low	0.17	4	2-3
B Norfolk	17-391	18-35 1	1.45-1.65 1.35-1.45 1.30-1.40	0.6-2.0	0.10-0.15 0.10-0.15 0.10-0.15	4.5-5.5	<2	Low Low	0.24	5	.5-2
amunkey i	14-4312	20-3511	1.35-1.55 1.35-1.65 1.40-1.65	0.6-2.0	0.06-0.15 0.13-0.19 0.04-0.12	4.5-7.3	<2	Low Low	0.28	ц ц	.5-2
eawick	0-7 7-99	10-25 1 35-60 1	.20-1.30 .30-1.50		0.10-0.17 0.10-0.17			Low High		ц.	.5-2

See footnote at end of table.

 $\frac{\partial \mathcal{L}_{\mathcal{M}}}{\partial t} = \frac{\partial \mathcal{L}_{\mathcal{M}}}{\partial t} \frac{\partial \mathcal{L}_{\mathcal{M}}}{\partial t} = \frac{\partial \mathcal{L}_{\mathcal{M}}}{\partial t} + \frac{\partial \mathcal{L}_{\mathcal{M}}}{\partial t} = \frac{\partial \mathcal{$

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 87 of 158

TABLE 14.--PHYSICAL AND CHEMICAL PROPERTIES OF SOILS--Continued

Soil name and	Depth	Clay	Moist	Permea-	Available	Soil	Salinity	Shrink-swell	Ero	sion tors	Organi
map symbol			bulk density	bility		reaction		potential	K		matte
	In	Pet	G/cm ³	<u>In/hr</u>	<u>In/in</u>	рн	Mmhos/cm			<u>}</u>	Pct
28 Seabrook	0-9 9-72	2-12 2-12	1.30-1.60 1.30-1.60		0.05-0.11	4.5-5.5 4.5-6.0		Low		5	.5-2
29A, 29B Slagle	1 9-25	12-35	1.30-1.45 1.30-1.45 1.35-1.60	0.6-2.0	10.10-0.18	3 6-5 5	<2 <2	Low Low Moderate	0.24	3	.5-1
30 State	111-52	18-34	1.25-1.40 1.35-1.50 1.35-1.50	0.6-2.0	0.10-0.20 0.14-0.19 0.02-0.10	4.5-5.5	<2	Low Low	0.28	4	.5-2
31B Suffolk	114-40	i 10-33	1.35-1.45 1.40-1.50 1.40-1.50	0.6-2.0	0.12-0.15 0.12-0.20 0.04-0.10	3.6-5.5	<2	Low Low	0.28	1 4 	.5-2
32 Tetotum	110-51	i 18-35	1.20-1.35 1.25-1.45 1.25-1.45	0.6-2.0	0.14-0.19	3.6-5.5	l <2	Low Low	0.32	1 1 1	.5-2
lomotley	1 8-50	118-35	1.30-1.60 1.30-1.50 1.35-1.50	0.6-2.0	0.10-0.15 0.12-0.18 0.04-0.10	3.6-5.5	<2 ×2	Low Low	0.20	5	1-2
	24-36 36-56	8-30 25-50	1.30-1.60 1.30-1.45 1.30-1.50 1.30-1.50	0.6-2.0	0.10-0.16	4.5-5.5	<2 <2	Low Low Moderate Moderate	0.24	5	.5-1
35. Udorthents					 1 	1	; ; ; ; ;	6 1 8 1 9		1 6 7 5 1 8	
36*: Udorthents.					1 1 1 1 1 1	0 6 6 7 7	1	1 7 8 8 9		 	
Dumps.					1 1 1						i
37 *. Urban land					, L L L t t	• 	• 5 7 7 6			1 1 1 1 1 1	
Iemassee	111-51	18-35	1.30-1.60 1.30-1.50 1.30-1.50	0.6-2.0	10.11 - 0.18	3.6-5.5	<2	Low Low	0.20	5	.5-2

* See description of the map unit for composition and behavior characteristics of the map unit.

- í

TABLE 15. -- SOIL AND WATER FEATURES

"Flooding" and "water table" and terms such as "rare," "brief," "apparent," and "perched" are explained in the text. The symbol > means more than. Absence of an entry indicates that the feature is not a concern]

Soil name and	Hydro-		Flooding		Hig	h water ta	able	Bee	drock	Risk of	corrosion
map symbol		Frequency	Duration	Months	Depth*	Kind	Months	Depth	Hard- ness	Uncoated steel	Concrete
	1		1	l	<u>Ft</u>	1		In	1		
Altavista	С	None			1.5-2.5	i Apparent	i Dec-Mar	>60		Moderate	Moderate.
2 Augusta	С	None			1.0-2.0	 Apparent	 Jan-May 	>60		High	Moderate.
Axis	D	Frequent	Very brief	Jan-Dec	+1-1.0	Apparent	Jan-Dec	>60		High	High.
u** Beaches								1 1 1 1 1 1	4 9 1 1		1 1 1 1 1 1 1
5 Bethera	D	None			+1-1.5	Apparent	Dec-Apr	>60		High	High.
Bohicket	D	Frequent	Very brief	Jan-Dec	+2-0	Apparent	Jan-Dec	>60	 	High	High.
Bojac	В	None			>4.0	Apparent	Nov-Apr	>60	 	Low	High.
8B Caroline	С	None			>6.0			>60		High	High.
Chickahominy	D	None			0-0.5	Apparent	Nov-Apr	>60	 	High	High.
10B, 10C Craven	с	None			2.0-3.0	Apparent	Dec-Apr	>60		High	High.
1B**, 11C**: Craven	с	None			2.0-3.0	Annarent	Dec-Apr			High	
Uchee	A	None			1		l	1	1	1	
12					3.5-5.0	Perched	Jan-Apr 	>60		Low	High.
Dogue	С	None			1.5-3.0	Apparent	Jan-Mar	>60		High	High.
3 Dragston	с	None			1.0-2.5	Apparent	Nov-Apr	>60		Low	High.
4B, 14C, 15D**, 15E**, 15F** Emporia	с	None			3.0-4.5	Perched	Nov-Apr	>60		Moderate	High.
6 Izagora	С	None			2.0-3.0	Apparent	Dec-Mar	>60		Moderate	High.
7** Johnston	D	Frequent	Brief to long.	Nov-Jul	+1-1.5	Apparent	Nov-Jun	>60		High	High.
8B Kempsville	В	None			>6.0			>60		Low	Moderate
9B**: Kempsville	B	None			>6.0			>60		Low	Moderata
Emporia	C I	None			1 1	Perched	Nov Ar-	1		1	1
OB Kenansville	-	None				Apparent		1		Moderate Low	1 ···
1 Levy	DI	Frequent	Very long	Jan-Dec	+2-+1	Apparent	Jan-Dec	>60		High	High.

See footnotes at end of table.

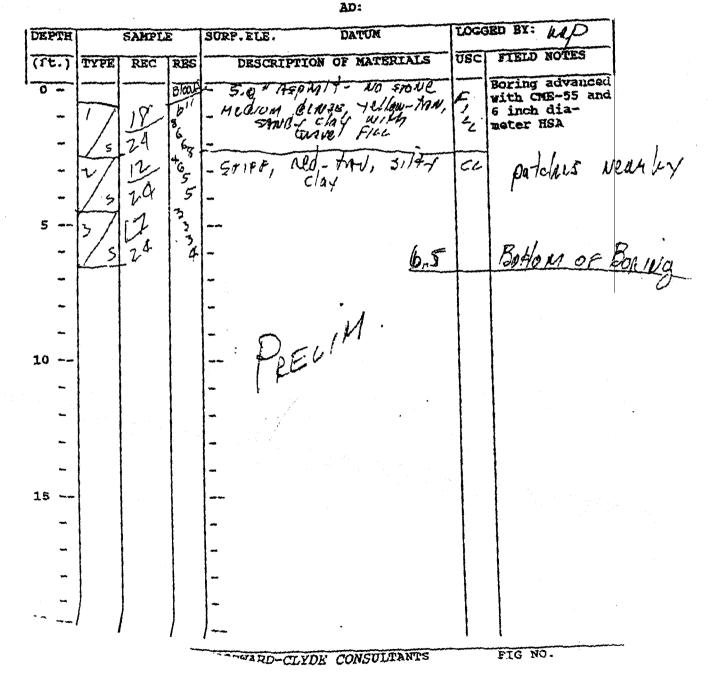
135

1	36
•	00

TABLE 15.--SOIL AND WATER FEATURES--Continued

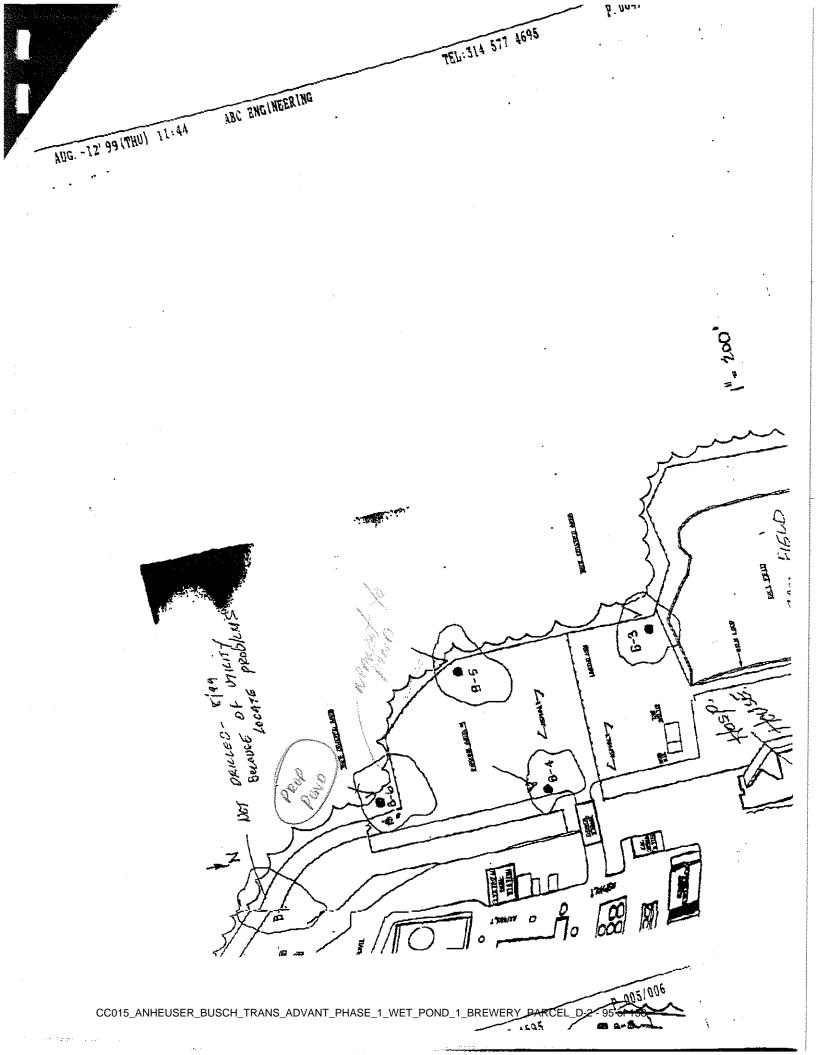
Soil nore and	Und	1	looding		High	water ta	able	Bec	irock	Risk of	corrosion
map symbol	Hydro- logic group	Frequency	Duration	Months			1			Uncoated	
22 Munden	В	None			<u>Ft</u> 1.5-2.5	Apparent	Dec-Apr	<u>In</u> >60		Low	High.
23 Newflat	ס	None			0.5-1.5	Apparent	Nov-Apr	>60		High	High.
4 Nimmo	D	None			0-0.5	Apparent	Dec-Apr	>60		Low	High.
25B Norfolk	В	None			4.0-6.0	Perched	Jan-Mar	>60		Moderate	High.
6B** Pamunkey	B .	None			>6.0		 	>60		Moderate	Moderate
Peawick	D	None			1.5-3.0	Perched	Nov-Mar	>60		High	High.
28 Seabrook	с	None		/	2.0-4.0	Apparènt	Dec-Mar	>60		Low	Moderate
9A, 29B Slagle	с	None			1.5-3.0	Perched	Nov-Apr	>60		Moderate	High.
30 State	в	None			4.0-6.0	Apparent	Dec-Jun	>60		Moderate	High.
1B Suffolk	В	None			>6.0			>60		Moderate	High.
2 Tetotum	с	None			1.5-2.5	Apparent	Dec-Apr	>60		High	High.
J Tomotley	B/D	None			0-1.0	Apparent	Dec-Mar	>60		High	High.
34B, 34C Uchee	A	None			3.5-5.0	Perched	Jan-Apr	>60		Low	High.
35 **. Udorthents				1 5 1 1 1			, 1 1 1 1 1	5 1 5 5 7	, , , ,		• • • •
36 **: Udorthents.									- 		• 6 8 8 9
Dumps.									1 1 1		
37**. Urban land			and a start of the second s The second se				1 1 8 9 1		F	1 1 1 1 1 1	
8 Yemassee	с	None			1.0-1.5	Apparent	Dec-Mar	>60		¦ High	High.

* A plus sign preceding the range in depth indicates that the water table is above the surface of the soil. The rst numeral in the range indicates how high the water rises above the surface. The second numeral indicates the depth ## See description of the map unit for composition and behavior characteristics of the map unit.


SHEET L OF PROJ. NO-DATE: 8/16/99 TEST BORING LOG PROJECT NAME: PROPISED ACCESS ROAD PROJECT LOCATION: WILLIAMS BURG, VA. DRILLING CONTR .: FROEHLING & POBERTSON WATER LEVEL INFORMATION (DEPTH/ELEV.): LOGGED BY: MAP ATD: HOW AD: FIELD NOTES DATUM Boring advanced with CME-55 and USC DESCRIPTION OF MATERIALS SURF. BLF. 6 inch dia-SAMPLE meter HSA F,I DEPTH RRS REC ASP Malt , woht TYPE BIDD Fill (I'i.) TO UNIONEST ALLEISA. CL OMP VIA MI Л sh TANLAJ 6 0 -VEO.4 STIFF +1 P420 BECOMING : nedium, donse, clarer SAND 24 BADON N, /6 5 1878 Bo Hom or Bon nig-50 扒 10 1578 6 ٩ 5 ς PRELIM --10 --_ -15 ---_ FIG NO. TARD-CLYDE CONSULTANTS

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 91 of 158

-


TEST BORING LOG SHEET 1 OF / PROJECT NAME: PRODOSED ACCESS ROAD PROJ. NO. PROJECT LOCATION: WILLIANSBURG, VA. DATE: 8/19/99 B-99-4 DRILLING CONTR.: FROEHLING & ROBERTSON

WATER LEVEL INFORMATION (DEPTH/ELRV.):

SHEET 1 OF PROJ. NO. DATE: 8/18/99 TEST BORING LOG PROJECT NAME: PROPOSED Arcess ROAD DRILLING CONTR .: FROEHLING & FOBGRISON PROJECT LOCATION: WILLIAMS BOK G, VA. 1 WATER LEVEL INFORMATION (DEPTH/ELEV.): NONE LOGGED BY: MP FIELD NOTES Boring advanced with CAE-55 and USCI DESCRIPTION OF MATERIALS SURP. ELE. 6 inch dia-meter HSA F,II SAMPLE AS PLATE DEPTH RES 2,5/10/40.5 REC TYPE TAN, Tellow, eL ŗt (22.) 000 6 Very STIFT, TA 6 UL To 0-115 browing ant, stroll 18 50 24 8 ¥٥٩ 4 Bottom of Boning VOR J STYFFI ĊL 170H 5117-1 ์ร_ิร 44 √er-/ BINOMING -jeilow- TAN 6.5 13.35 ___ SiHJ Cla 10 2ª ን 5 1) RECIM 10 ----~ 15 ~ ~ FIG NO. THARD-CLYDE CONSULTANTS

SHEET 1 OF / PROJ . NO. TEST BORING LOG DATE: 8/18/99 PROJECT NAME: PROPOSED ACCESS ROAD DRILLING CONTR .: FROENCING & ROBGATSON PROJECT LOCATION: WICLIAMS BUEG, VA. WATER LEVEL INFORMATION (DEPTH/ELEV.): NON LOGGED BY: MP FIELD NOTES Boring advanced with CMR-55 and USC DESCRIPTION OF MATERIALS SURF . F.L.E. 6 inch dia-SAMPLE meter HSA DEPTH TRES YEITON - HAN, SANDY 3.57 14141 REC 60 G.S. STOLL TYPE (It.) w/· siut 1 CGA-1, with NO Fill. Storys 'sc 6" STIPF, 0-SAND JUNSES BLOOMING VOID STIFF, 10-7-9 Riddish - TH, 5127-1 4 CL Bottom OF Bonlain 4 G 6 1/4 clahan O 7, q PREVIM. 7.ª BONDMING 5 468 12 5 24 a 10 5 -10 --~ 15 . -FIG NO. TODWARD-CLYDE CONSULTANTS

ADDENDUM NO. 1

ТО

STORMWATER MANAGEMENT PLAN

for

TRANSPORTATION ADVANTAGE – PHASE 1 ANHEUSER BUSCH

Williamsburg, Virginia

THE HASKELL COMPANY

Haskell Building Jacksonville, Florida

Project 32193

SP-121-99

NEED BOTH SWM REPORTS. THIS IS AN ADDENDUM OF CHANGES.

CC 015

Revised Issue:December 15, 1999Original Issue:November 16, 1999Prepared By:Joseph W. Stepp, P.E.

ADDENDUM NO. 1 STORMWATER MANAGEMENT PLAN

Anheuser-Busch Brewery Transportation Advantage - Phase I Williamsburg, VA

The following addendum is presented to update portions of the original issue Stormwater Management Plan as submitted on November 16, 1999. Below is a summary of changes made to each section of the original Stormwater Management Plan. Also included is an updated and revised "DESIGN NARRATIVE", which was presented in the original issue.

SECTION A EXISTING CONDITIONS ANALYSIS

No Changes to this section are necessary Reference

SECTION B

POST CONDITIONS ANALYSIS

- (a) New stormwater analysis includes area 5 and a majority of area 6 as shown on the original issue color map. A new color map will not be issued under this addendum.
- (b) The contributing drainage area to POND1 has been updated to include an additional 0.74 acres of existing paved area. Included herewith is a new breakdown of the contributing drainage areas to POND1.
- (c) No other updates or changes are included herewith. Details of the control structure as shown on the re-submitted plans (Revised Permit Issue, 12/15/99) will take precedence over the original permit issue.

SECTION C EXISTING AND POST CONDITIONS BASIN INPUT SUMMARIES AND ROUTING RESULTS

(a) Hydrograph and Flood Routing simulations were updated to reflect additional contributing drainage area and the directly connected impervious area (DCIA). Included are new simulations for 1, 2, 10, and 100 year 24 hour design events.

SECTION D

(a) Updated flood routing input parameters to reflect changes in the riser structure orifice diameter and the weir crest elevation.

SECTION E ORIFICE/STAGE-STORAGE & VOLUME RECOVERY CALCULATIONS

- (a) Revised Water Quality Volume to reflect additional paved area.
- (b) Revised Permanent Pool Volume calculations to reflect loss in permanent pool volume due to submerged rock barrier and sedimentation of pond.
- (c) Revised Downstream Channel Erosion Control Volume (1 yr, 24-hr storm) to reflect volume indicated on Post Development Hydrograph.
- (d) Revised Orifice Configuration calculations to reflect changes in volume.

SECTION F

STORM SEWER DESIGN TABULATIONS

- (a) Corrected mis-labeling of Original Issue title to indicate use 10 year Design Storm
- (b) Revised storm sewer tabulations to reflect new configuration of storm sewer as shown on revised Permit Issue Construction Drawings 12/15/99.
- (c) Revised inlet times to utilize inlet flow time of 10 minutes from previously used 5 minutes. Industry standard is to use a minimum of 10 minutes.

APPENDIX

No Changes to this section are necessary

STORMWATER MANAGEMENT PLAN

Anheuseur-Busch Transportation Advantage – Phase I Williamsburg, VA

November 16, 1999 (Revised December 15, 1999)

DESIGN NARRATIVE

Introduction

Anheuser-Busch is proposing to expand their truck and trailer staging and storage areas through the "Transportation Advantage" project. <u>Phase One</u> of the Transportation Advantage project will consist of an expansion of existing parking facility to accommodate 123 truck and trailer storage spaces.

Project Description

Phase One expansion will include construction of 39 new paved truck storage spaces along the east side of the existing facility west of the Brewery including addition of new stormwater facilities to serve the new construction. In addition, existing paved areas will be revitalized and new asphalt overlay provided. Re-striping of the area and provision of curbing and/or curb & gutter will be provided where necessary for stormwater control.

Project Location

Phase One is located in the southwest area of the existing brewery.

Existing Land Use

Currently, Phase One project area is used as a construction staging area. Access to the area is from an existing guarded paved roadway from the south.

□ Flood Zone

Based on the Flood Insurance Rate Map (Panel Number 510201 0050 B, Effective Date February 6, 1991), the site and surrounding areas are located in Zone X. This zone is outside of the 500-year flood plain. Maps and related information are included in the appendix of this report.

Soil Conditions

References: Original Permit Issue of November 16, 1999 SCS Soil Survey Map and Related Information URS Griner Woodward Clyde Soil Boring Logs

Based on the SCS Soil Survey, the project is located within an area designated Urban Land (#37). With reference to the survey narrative, included with this mapping unit are areas of undisturbed soils, commonly well-drained Emporia soils (19A), and moderately well drained Slagle soils (#29B).

In addition to the soil survey, test borings were provided by URS Greiner Woodward Clyde. A comparison of the boring logs with the Engineering Index Properties (Table 13) of the abovementioned survey shows a close resemblance between Emporia and Slagle soil units and the existing soils on site.

The above referenced information is contained in the Appendix of the original permit issue.

Design Concept

In designing the grading scheme for the newly paved areas (and, in an effort to match existing drainage patterns of the site) collection of stormwater runoff from the newly paved areas would also include the existing paved parking area which was not previously collected but allowed to drain to off-site areas to the south. Since, the Chesapeake Bay Preservation Ordinance requires a 10 percent reduction in non-point source pollution load for re-development sites, inclusion of the existing paved parking area into the stormwater system should meet this requirement for the Phase One expansion area. Also, a portion of the existing pavement (approximately 11,150 sf) will be removed as part of Phase One.

In addition, to meet channel downstream erosion requirements, the stormwater management system will be designed to new James City County requirements for the 1 year -24 hr storm event. Attenuation of the 2 and 10 year -24 hour storms will also be provided.

D Existing Conditions Analysis

References:

Original Permit Issue of November 16, 1999-Color Aerial Photo showing existing conditions for Phase One Area Topographic survey showing existing conditions for Phase One Area

As shown on the map of existing conditions, an existing drainage divide splits Phase One area. Currently approximately 88,585-sf +/- of asphalt pavement drains westerly to a collection system, which conveys the stormwater runoff to an existing wet detention area adjacent to the site and ballfield area. The remaining 82,810-sf +/- of asphalt pavement drains easterly to an open-channel conveyance system that traverses along the westerly and southerly side of the existing monorail system to a point of discharge through an existing 72-inch pipe that discharges

to off-site drainage areas south of the brewery. This pipe also is the main conveyance pipe for the brewery drainage system within the boundaries of the monorail system. A sparsely wooded area separates the open-channel and the existing pavement area.

A time of concentration path is shown on the map of existing conditions which is representative of the Phase One area draining to the open-channel section along the monorail. Time of concentration for this contributing area is calculated to be approximately 24 minutes.

Using the SCS Unit Hydrograph Methodology, discharge from the Phase One area was computed for the 1, 2, 10 and 100 year return periods of 24 hour duration. These hydrographs were then used as guidelines for post-conditions design.

Reference the Stormwater Analysis – Section A for details of the existing-conditions analysis.

D Post Conditions Analysis

References: Original Permit Issue -Topographic survey showing post-conditions for Phase One Area

As shown on the Post-Conditions map, existing drainage patterns are being maintained for Phase One site area. The existing drainage divide will be maintained "as-is" by use of asphalt leveling courses and a new wearing course of asphalt-concrete. Currently, a non-woven geotextile will be utilized as part of the pavement rehabilitation.

With respect to maintaining the existing drainage divide, the existing paved area currently draining westerly will continue to drain westerly except for a small portion of pavement (approximately 11,150 sf), which will be removed as part of demolition. Given this fact, post-condition drainage analysis of the area draining westerly will not be presented at this time since there is no additional impact to this area under Phase I re-development.

Post-conditions analysis will focus on the Phase One area draining easterly.

Under post-conditions a new paved area will be provided along the East side of the existing pavement. This new paved area will provide 39 new truck storage spaces. In addition, a small triangular area of new pavement will be necessary at the southwest quadrant area of the existing paved access road connecting to Phase One. This additional pavement was necessary to provide for safe and efficient turning movements of truck-trailer maneuvering.

A wet detention pond will be provided for post-conditions. A wet detention was chosen over dry due to the existing clayey soils beneath the ground surface, the depth of the proposed detention pond, and the fact that the existing detention pond adjacent to the project area (Ballfield Pond) is observed to be wet.

As shown on the post-conditions map, there are a total of four (5) drainage areas that will contribute runoff directly to the pond for a total of 3.95 acres.

(Please note that drainage area DA-1 is a future parking expansion area and although not constructed under Phase One, the pond has been sized to include this area)

To meet downstream channel erosion protection requirements, the new James City County requirements for routing of the 1 yr 24 hr storm event of 2.8 inches into the pond and sizing an orifice to discharge this volume over a 24 hour period was used. The "Kerplunk" method was used in this analysis to set the initial weir crest elevation (which was later adjusted to the maximum stage obtained in the pond utilizing orifice flow only). In addition, the 2 and 10-year storm events of 24-hour duration were routed through the detention pond and the weir control structure sized to control the outlet discharge at or below the discharge rates computed in the existing-condition analysis. Finally, the 100-year storm is routed to assure one (1) foot of freeboard between the top of pond and the maximum stage attained in the pond.

The SCS Unit Hydrograph methodology was used along with the adICPR program (advanced Interconnected Pond Routing). A description of this program is included in the Appendix of this report.

Due to the direct connection of the paved parking areas to the pond the initial abstraction of runoff is less than the normal abstraction used in the SCS runoff equation; therefore, all impervious areas (including the pond water surface area) are appropriately modeled as directly connected impervious area (DCIA) in the stormwater drainage model.

Although time of concentration for the system is less than 10 minutes, the flood routing analysis will use the industry standard minimum value of 10 minutes.

Reference the Stormwater Analysis – Section B for details of the post-conditions analysis.

To meet the 10 percent reduction in non-point source pollutant loading (as required by the Chesapeake Bay Preservation Ordinance), existing paved areas draining easterly and southerly to off-site areas will be collected and conveyed to the new storm water management system prior to being released.

As noted above, under existing conditions there is approximately 82,810-sf +/- of existing paved parking area draining easterly and southerly to off-site areas. Under post-conditions the total impervious area (including new pavement) draining easterly to off- site areas without being treated is approximately 4,120 sf +/- (a portion of drainage area 6 as shown on the Post-Conditions Map) (reference construction drawing sheet 207 for grading details). The impervious area being captured and directed to the proposed detention area for treatment is approximately 131,856-sf +/- (indicated as drainage areas 1, 2, 3, and 4 on construction plan sheet 207. Of the 131,856-sf of paved area to be treated, approximately 78,690-sf is existing paved area. Therefore, the net reduction in impervious area draining easterly and southerly to off-site areas is reduced by approximately 95 percent. This reduction should meet the 10 percent reduction required by the Chesapeake Bay Preservation Ordinance for re-developed areas.

D Summary

The following is a summary of results for the design of the system.

Discharge Rate Analysis:

Design Storm	Existing Conditions (cfs)	Post Conditions (cfs)	WSEL
1 yr – 24 hr	3.06	0.42	EL. 75.93
2 yr - 24 hr	4.59	1.26	EL. 76,13
10 yr – 24 hr	10.07	5.36	EL. 76.82
1004R-24hr	15.54	7,30	EL, 77.53

Minimum top of bank elevation for the detention pond = 79.0 ft

Emergency Spillway is the paved roadway fronting the pond 100 year flood stage in pond = 77.53 ft.

Minimum elevation of pond bank adjacent to roadway = 77.60 ft. (Top DAM)

Roadway to be used as emergency spillway if overtopping occurs

NORMAL POOL = 74.50RISER CREST = 77.75WEIR CREST = 76.00W& ORIFICE = 74.65

STORMWATER ANALYSIS ANHEUSER-BUSCH TRANSPORTATION ADVANTAGE WILLIAMSBURG, VA

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 104 of 158

SECTION A EXISTING CONDITIONS ANALYSIS

REFERENCE THE ORIGINAL PERMIT ISSUE STORMWATER MANAGEMENT PLAN NOVEMBER 16, 1999

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 106 of 158

SECTION B POST CONDITIONS ANALYSIS

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 107 of 158

POND 1 CONTRIBUTING AREA BREAKDOWN

Drainage	Contributing	Impervious	Impervious	Pervious	Pervious
Area	Area, Acres	Area, Acres	Runoff CN	Area, Acres	Runoff CN
DA-1	0.484	0.484	98	-	61
DA-2	1.326	1.326	98	-	61
DA-3	0.640	0.640	98	-	61
DA-4	0.577	0.577	98	-	61
DA-POND(1)	0.912	0.324	100	0.588	61

Total Contributing Drainage Area: Directly Connected Impervious Area: % DCIA:
 3.94
 acres

 3.35
 acres

 85%
 acres

General Notes:

1 Pond water surface assumed to be DCIA

3 If DCIA methodology is not used for analysis, use a composite runoff CN for contributing area = 92.6

4 Time of concentration for area is 10 minutes

5 SCS Unit Hydrograph Method (Design K = 484)

SECTION C EXISTING AND POST CONDITIONS BASIN INPUT PARAMETERS AND ROUTING RESULTS

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 1 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

Basin Name:	XPH1	POND1	
Group Name:	X-COND	POST	
Node Name:	OUT1	POND1	
Hydrograph Type:	UH	UH	
Unit Hydrograph:	UH484	UH484	
Peaking Factor:	484.00	484.00	,
Spec Time Inc (min):	3.20	1.33	
Comp Time Inc (min):	3.20	1.33	1 yr - 24 hr
Rainfall File:	SCS11-24	SCSII-24	
Rainfall Amount (in):	2.80	2.80	
Storm Duration (hr):	24.00	24.00	
Status:	INACTIVE	ONSITE	
Time of Conc. (min):	24.00	10.00	
Lag Time (hr):	0.00	0.00	
Area (acres):	2.94	3.94	
Vol of Unit Hyd (in):	1.00	1.00	
Curve Number:	80.00	61.00	
DCIA (%):	0.00	85.00	
Time Max (hrs):	12.16	12.02	
Flow Max (cfs):	3.06	10.44	
Runoff Volume (in):	1 1.10	2.34 🕅	
Runoff Volume (cf):	11746	33406	\mathbf{i}
/			\sim
C M M M M M M M M M M	-		POST Q (TO POND)

EXISTING Q

POST Q LTO PONDS

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 1 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

⊜(Time uni Node Name	ts - hou Group Name	rs) Max Time Conditions	Max Stage (ft)	Warning Stage (ft)	Max Delta Stage (ft)	Max Surface Area (sf)	Max Time Inflow	Max Inflow (cfs)	Max Time Outflow	Max Outflow (cfs)
OUT1 POND1	POST POST	12.00 13.95 Мах. S I ул. 24		75.00 78.00	0.0002 0.0062	0.00 17096.99	14.08 12.00 МЛ ОКІ	0.42 10.37 FICE FL	0.00 14.08	0.00 0.42

0.42 < 3.06 . OK

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 2 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

Basin Name: Group Name: Node Name:	XPH1 X-COND OUT1	POND 1 POST					
Node Name:		DOCT					
	01171	PUSI					
· · · ·	0011	POND 1					
Hydrograph Type:	UH	UH					
Unit Hydrograph:	UH484	UH484					
Peaking Factor:	484.00	484.00					
Spec Time Inc (min):	3.20	1.33					
Comp Time Inc (min):	3.20	1.33					
Rainfall File: S	CSII-24	SCS11-24				2 41	
Rainfall Amount (in):	3.50	3.50				2 97	2 -
Storm Duration (hr):	24.00	24.00					
	NACTIVE	ONSITE					
Time of Conc. (min):	24.00	10.00					
Lag Time (hr):	0.00	0.00					
Area (acres):	2.94	3.94					
Vol of Unit Hyd (in):	1.00	1.00					
Curve Number:	80.00	61.00					
DCIA (%):	0.00	85.00					
Time Max (hrs):	12.16	12.02					
Flow Max (cfs):	4.59	13.26					
Runoff Volume (in):	11.63	2.97					
Runoff Volume (cf):	17440	42505					
			POST	Q	(то	AND)	

24 m.

/ EXISTING Q

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 2 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

⊕(Time unit Node Name	ts - hou Group Name	ns) Max Time Conditions	Max Stage (ft)	-	Max Delta Stage (ft)	Max Surface Area (sf)	Max Time Inflow	Max Inflow (cfs)	Max Time Outflow	Max Outflow (cfs)
OUT1 POND1	POST POST	12.00 12.62	74.80 76.13	75.00 78.00	0.0002 0.0077	0.00 17543.65	12.63 12.00	1.26 13.17	0.00 12.63	0.00 1.26
		Мах 2 Ул -					0	1AX. OUT RIFICE	WEIR	

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 113 of 158

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 10 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

Basin Name:	XPH1	POND1	
Group Name:	X-COND	POST	
Node Name:	OUT 1	POND 1	
Hydrograph Type:	UH	UH	
Unit Hydrograph:	UH484	UH484	
Peaking Factor:	484.00	484.00	
Spec Time Inc (min):	3.20	1.33	
Comp Time Inc (min):	3.20	1.33	
Rainfall File:	SCSII-24	SCSII-24	
Rainfall Amount (in):	5.80	5.80	
Storm Duration (hr):	24.00	24.00	
Status:	INACTIVE	ONSITE	11
Time of Conc. (min):	24.00	10.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Lag Time (hr):	0.00	0.00	
Area (acres):	2.94	3.94	
Vol of Unit Hyd (in):	1.00	1.00	
Curve Number:	80.00	61.00	
DCIA (%):	0.00	85.00	
Time Max (hrs):	12.16	12.02	
Flow Max (cfs):	10.07	22.84	
Runoff Volume (in):	1 3.60	5.12	
Runoff Volume (cf):	38382	73215	
/	/		
			POST Q (To POND

10 Yr - 24 Hr

POST Q (TO POND)

EXISTING Q

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 10 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

@(Time unit Node Name	ts - hou Group Name	•	Max Stage (ft)	Warning Stage (ft)	Max Delta Stage (ft)	Max Surface Area (sf)	Max Time Inflow	Max Inflow (cfs)	Max Time Outflow	Max Outflow (cfs)
OUT1 POND1	POST POST	12.00 12.25	74.80 76.82	75.00 78.00	0.0002 0.0108	0.00 19080.44	12.25 12.00	5.36 22.69	0.00 12.25	0.00 5.36
		рх. Stabe Ya - 24 У					<i>№</i>	IAX. OUTI RIFICE F	FLOW WEIR	

5.36 < 10.07 . OK

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 100 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

Basin Name:	XPH1	POND1	
Group Name:	X-COND	POST	
Node Name:	OUT1	POND1	
Hydrograph Type:	UH	UH	
Unit Hydrograph:	UH484	UH484	
Peaking Factor:	484.00	484.00	
Spec Time Inc (min):	3.20	1.33	
Comp Time Inc (min):	3.20	1.33	
Rainfall File:	SCS11-24	SCSII-24	
Rainfall Amount (in):	8.00	8.00	
Storm Duration (hr):	24.00	24.00	100 yr - 24 h
Status:	INACTIVE	ONSITE	
Time of Conc. (min):	24.00	10.00	
Lag Time (hr):	0.00	0.00	
Area (acres):	2.94	3.94	
Vol of Unit Hyd (in):	1.00	1.00	
Curve Number:	80.00	61.00	
DCIA (%):	0.00	85.00	
Time Max (hrs):	12.11	12.02	
low Max (cfs):	15.54	32.23	
Runoff Volume (in):	5.62	7.22	
Runoff Volume (cf):	59951	103292	

POSTQ (TO PONO)

AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 100 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99)

⊖(Time units - hours)

Node	Group	Max Time	Max Stage	Warning		Max Surface	Max Time	Max Inflow	Max Time	Max Outflow
Name	Name	Conditions	(ft)	Stage (ft)		Area (sf)	Inflow	(cfs)	Outflow	(cfs)
OUT1	POST	12.00	74.80	75.00	0.0002	0.00	12.26	7.30	0.00	0.00
POND1	POST	12.26	77.53	78.00	0.0135	20697.74	12.00	32.03	12.26	7.30
				\backslash	MAX S	TRAF				
					MAX. S					

100 yr. 24 hr.

SECTION D FLOOD ROUTING INPUT PARAMETERS

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.	
AB-Wmb Transportation Advantage - Phase 1 POND1 Flood Routing Input Parameters November 11, 1999 (Revised 12/11/99)	
********** Input Report ************************************	
Group: POST Length(ft): 0 Warn Stage(ft): 75 Comment: Transportation Advantage - Phase 1 Pond	
Time(hrs) Stage(ft) 74 12 74.8	
Name: POND1 Base Flow(cfs): 0 Init Stage(ft): 74.5 Group: POST Length(ft): 0 Warn Stage(ft): 78 Comment: Transportation Advantage - Phase 1 Pond	
Stage(ft) Area(ac) 74.5 0.3239 75 0.3473 76 0.396 77 0.447 78 0.5002	
Name: POND1OUT From Node: POND1 Length(ft): 80 Group: POST To Node: OUT1 Count: 1	
Outlet Cntrl Spec: Use dc or tw Inlet Cntrl Spec: Use dn Upstream Geometry: Circular Downstream Geometry: Circular UPSTREAM DOWNSTREAM	
Span(in): 15 15 Rise(in): 15 15 Invert(ft): 74.26 74.1 Manning's N: 0.013 0.013 Top Clip(in): 0 0 Bottom Clip(in): 0 0	}
Entrance Loss Coef: 0.5 Flow: Both Exit Loss Coef: 1 Equation: Aver Conveyance	
Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall 1 1 Downstream FHWA Inlet Edge Description:	
Circular Concrete: Square edge w/ headwall 1 1 POND 1 OUTFALL STRUCTURE	

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [2] Copyright 1995, Streamline Technologies, Inc. AB-Wmb Transportation Advantage - Phase 1 POND1 Flood Routing Input Parameters November 11, 1999 (Revised 12/11/99) *** Weir 1 of 2 for Drop Structure POND1OUT *** [TABLE] Count: 1 Bottom Clip(in): 0 Type: Mavis Top Clip(in): 0 Flow: Both Weir Discharge Coef: 3 Geometry: Circular Orifice Discharge Coef: 0.6 ORIFICE Span(in): 3.825 Invert(ft): 74.5 DIA. Rise(in): 3.825 Control Elev(ft): 74.5 *** Weir 2 of 2 for Drop Structure POND10UT *** [TABLE] Count 3 Type: Mavis Bottom Clip(in): 0 Top Clip(in): 0 Flow: Both Weir Discharge Coef: 3 Geometry: Rectangular Orifice Discharge Coef: 0.6 Span(in): 24 Invert(ft): 76 Control Elev(ft): 76 Rise(in): 20 -----Class: Simulation-----G:\ICPR2\IND\32193\32193PH1\POST-100 Execution: Both Header: AB-WMB TRANSPORTATION ADVANTAGE POST-CONDITIONS 100 YR 24 HR SIMULATION (PHASE 1) NOVEMBER 11, 1999 (Revised 12/10/99) Max Delta Z (ft): 1 Delta Z Factor: 0.05 Override Defaults: Yes Time Step Optimizer: 1 Storm Dur(hrs): 24 Drop Structure Optimizer: 1 Rain Amount(in): 8 Sim Start Time(hrs): 0 Rainfall File: SCSII-24 Sim End Time(hrs): 24 Min Calc Time(sec): 0.5 Max Calc Time(sec): 10 To Hour: PInc(min): To Hour: PInc(min): 8 60 8 60 10 15 10 15 2 11 6 14 15 2 14 16 18 6 20 30 20 15 24 60 24 30 -GROUP SELECTIONS-[12/15/99] - BASE [NO RUN] + X-COND [12/15/99] + POST

SECTION E ORIFICE/STAGE-STORAGE & VOLUME RECOVERY CALCULATIONS

Anheuser-Busch Transportation Advantage Williamsburg, VA

Stage-Storage Calculations

Orifice Configurations:

			Average	Depth	Volume	Volume	Volume		WQ Volume	J	yr - 24 hr Volu	ne
Stage, ft.	Area, sf	Area, acres	Area, sf	Incr., ft	Incr., cf	Accum., cf	Accum., af					
Detention Pond Attenuation	on Volume:							Volume:	5,494	cf	33,406	cf
78.0	21,790	0.5002	20,630	1.00	20,630	62,488	1.4345	Brim Drawdown Time:	30	hrs	24	hrs
• 77.0	19,470	0.4470	18,360	1.00	18,360	41,858	0.9609					
76.0	17,249	0.3960	16,190	1.00	16,190	23,499	0.5395	Average Rate of Discharge:		cf/hr	1,392	cf/hr
75.0	15,130	0.3473	14,619	0.50	7,309	7,309	0.1678		0.05	cfs	0.39	cfs
74.5	14,107	0.3239		-	-	-	· -					
Detention Pond Permanen	t Pool Volum	e:						Initial Orifice Diameter:	2.1273	inches	3.8162	inches
74.5	14,107	0.3239	13,592	0.50	6,796	34,778	0.7984	Invert Elevation:	74,50	ft	74.50	ft
74.0	13,077	0.3002	12,104	1.00	12,104	30,862	0.7085	Design Orifice Coefficient:	0.60		0.60	
73.0	11,131	0.2555	10,236	1.00	10,236	18,758	0.4306					
72.0	9,340	0.2144	8,522	1.00	8,522	8,522	0.1956	Orifice Centerline Elevation:	74.59	ft	74.66	
71.0	7,704	0.1769	-	•	•	-	-	Pond Volume at Centerline:	1,296	cf	2,324	cf
For simplicity PPV at elev	ation 74.5 ha	s been adjusted	to reflect volu	ume lost due te	o the Rock Ba	rrier using a c	onservative	Adjusted Volume:	6,790	cf	35,730	cf
estimate of 20% voids. In	addition, vol	ume below ele	vation 71 was	not included t	o account for	volume lost di	ue to siltation.	Adjusted Stage:	74,96	ft	76.70	ft
•	rvious Area:	131,856	sf					Initial Elev of Water Surface:	74.96		76.70	
Water Qual	ity Volume:	0.50		f from imperv				Final Elev of Water Surface:	74.59	4	74.66	
Permanent Pe	ool Volume:	2.00	inches/impe	rvious acre (JC	C BMP Poin	t System, Tabl	le 1)	Average Depth:	0.19	ft	1.02	ft
Required Water Qual	lity Volume:	5,494	cf	0.1261	ac ft			Orifice Area:	0.0244	sf	0.0794	sf
Required Permanent P	-	21,976	cf	0.5045				Orifice Diameter:	0.1762	ft	0.3180	ft
			1					Orifice Diameter:	2.1139	inches	3.8162	inches
Downstream Cha	nnel Eros	sion Contr	ol Volum	е: (К	erplunk Meth	od)						
2011-011-011-0-011				,	•	,			Orifice Dia	ameter Used	: 3.8125	inches
Runoff Volume fro	m 1 vr 24 hr 9	Storm Event:		33,406	cf						(~3 13/16")	
	n SCS Unit H				acre feet							
Final Weir Stage (Based or		Weir Stage: ng Analysis):		76.54 76.00	(Maximum F	ond Stage for	1 yr Storm)					
						e Haskell Com						

111 Riverside Avenue Jacksonville, FL 32231-4100

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 122 of 158

SECTION F STORM SEWER DESIGN TABULATIONS

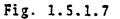
PROJECT: WILLIAMSBURG TRANSPORTATION ADVANTAGE

CLIENT: ANHEUSER BUSCH

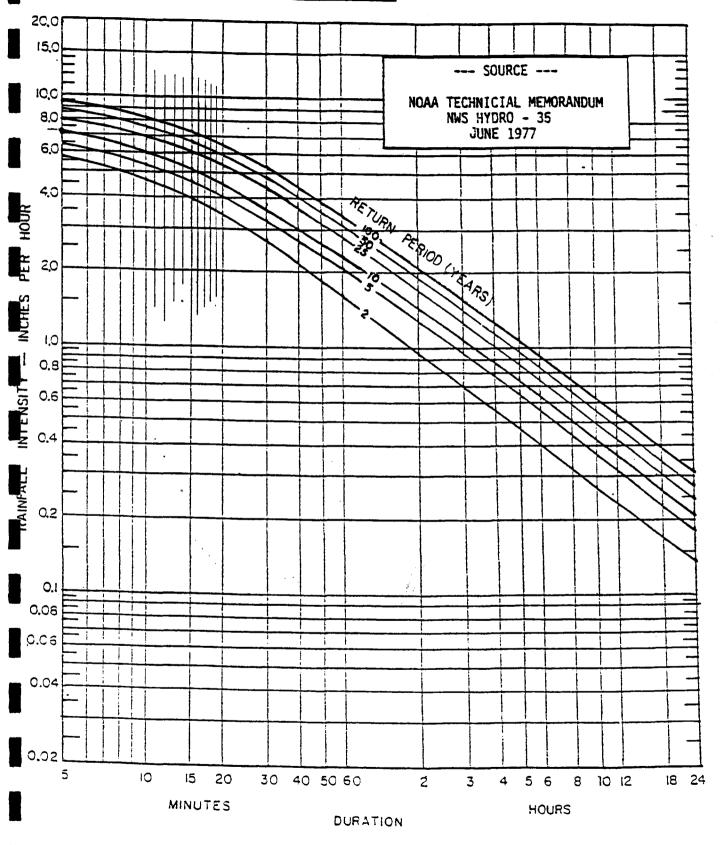
OF SHEET: 1 1

JOB NUMBER:	32193
BY:	JWS
DATE:	11/15/99
	(Revised 12/10/99)

			anasnasnam asaasaan muusuu u yu	RVIOUS '(RVIOUS '(anna stansonna			STORM	SEWÉF	R DESIG YR DES			N FORM	N				HGL CROWN]		
									.				.					INVERT	· · · · · · · · · · · · · · · · · · ·	1		
UPPER END	LOWER END	INCREMENTAL AREA	SUB-TOTAL OF	× .	TOTAL 'c' × AREA	INLET TIME	SEGMENT FLOW TIME	TIME OF CONCENTRATION	RAINFALL INTENSITY	FLOW RATE	LENGTH	DIAMETER	MANNINGS 'n'	CROSS-SECTIONAL AREA	HYDRAULIC RADIUS	INLET/GRATE ELEVATION	UPPER END	LOWER END	FALL	SLOPE	VELOCITY	CAPACITY
		acre	s acre	s ///////		min.	min.	min.	in/hr	cfs	ft	inches	` 	sf	ft	ft-msl	ft-msl	ft-msl	ft	%	fps	cfs
																		1			i	
		0.48										<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>					77.76	(77.43)	0.33	0.232	2.23	2.74
ST1	ST2		overskjammenskenske	องอาการสู้เสราะการเหตุการ		5 10.00	1.08	10.00	6.00	2.74	144	15	0.013	1.23	0.31	78.00√	74.28	73.95 72.70	0.33	0.229	2.52	3.09
		1.33	-														73.03	76.84	0.59	0.229	3.23	10,15
ST2	ST3	all and the second second		namen Egenna maanaan oo s		2 10.00	1.11	11.08	5.90	10.15	216	24	0.013	3.14	0.50	77.25	73.95	73.45	0.50		3.23 ///////////////////////////////////	
TAR				ana kommuni	······ ·······························												71.95	71.45	0.50	0.231	2 3.46	10.88
		0.00															76.84	76.42	0.42	0.218	3.07	9.63
ST3	ST4	0.00	0.00	0.0	D 1.7	2 10.00	1.04	12.19	5.60	9.63	192	24	0.013	3.14	0.50	79.10	73.45	73.00	0.45			
7 <i>9(1</i>)	SI MAA	0,00	0.00) 0.0	o <i>///////</i>												71.45	71,00	0.45	0.234	3.49	10.95
		0.66	2.47	2.3	5												76.42	76.18	0.24	0.148	2.49	12.20
ST4			0.00	0.0	0 2.3	5 10.00	1.07	13.24	5.20	12.20	160	30	0.013	4.91	0.63	77.25	73.00	72.84	0.16			Y/////////////////////////////////////
TA MA	8//11/9/																70.50	, 70.34	0.16	0.100	2.64	12.97 \
	///////////////////////////////////////	0.57						<i>Ç</i>		<i>Ų</i>		<i>[[[[[[[[[]]]]]]]]</i>]]	<i>4111111111111111111111111111111111111</i>				76.38 🖌	76.18	0.20	0.288	2.23	2.73
ST9			งจากกรู้เวลาการคนเงาลล	างการผู้การการเหตุการการ		10.00	0.52	14.31	5.05	2.73	70 	15 	0.013	1.23	0.31	76.40	73.00	72.84	0.16			
	9/71/9//		~~														71.75	71.59 76.00·	. 0.16	0.229	2.52	3.09 14.30
OTE		0.00	ากความผิวกรุงการการการการการการการการการการการการการก	and the former considered as				14.83	A 05		40	30	0.013	4 01	0.63		76.18	76.00	0.18 0.04	0.450	2.91	14.30
ST5	ST6	0.00			······································) 10.00	0.23	14.83	4.95	14.30	40		0.013	4.91	0.63	na	72.84 70.34	72.80	0.04	0.100	2.64	12.97
		0.00	<u>į</u> 0.00	0.00	• 9////////												1 10.04	70.00	1 0.04	0.100	<u> </u>	÷


1 INLET TIMES CHARGED PROM 5 mil IN 182 SUPER SIZES STILL

INLET Z SURCHARGES 0.18


STORM OK.

ÓK_

THE SAME. OK CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 124 of 158

APPENDIX

STORMWATER ANALYSIS ANHEUSER-BUSCH TRANSPORTATION ADVANTAGE WILLIAMSBURG, VA

REFERENCE THE ORIGINAL PERMIT ISSUE STORMWATER MANAGEMENT PLAN NOVEMBER 16, 1999

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 127 of 158

7. Geotechnical Reports

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 128 of 158

RECEIVED

REPORT OF FIELD COMPACTION TESTS

OCT 2 8 2000

JOBSITE

TESTED FOR: MR. KIRK RENO ANHEUSER-BUSCH CONSTRUCTION 7801 POCAHONTAS TRAIL WILLIAMSBURG, VA 23187

PROJECT:

TRANSPORTATION A NTAGE WILLIAMSBURG, VA

DATE:

October 11, 2000

OUR REPORT NO .: 884-00005-386

TEST DATA: (265) BROWN CLAYEY SAND W/SOME GRAVEL- SC OPT. MOIST. = 10.5%

								· · · · · · · · · · · · · · · · · · ·		
TEST NO.	TEST DEPTH	ELEVATION	SOIL ID NUMBER	MAXIMUM LAB DRY * DENSITY	WATER CONTENT	WET DENSITY	DENSITY	PERCENT COMPACTION	COMMENTS Spec.	95% Min
1	12	0 (FG)	265	122.5	12.9		117.0	k		· · · · · · · · · · · · · · · · · · ·
		C								
	· · · · · · · · · · · · · · · · · · ·				· · · · ·					
	No. 4									
	· · · · ·									
	L	<u> </u>			L		L	1		

TEST LOCATION: BMP 2 EMBANKMENT

1	25' SOUTHWEST OF ST-37		
			· · · · · · · · · · · · · · · · · · ·
NOTES:	TESTS PERFORMED PER ASTM D2922-96 & ASTM D3017-96 DENSITIES SHOWN: Lbs. per cubic foot WATER CONTENT: Percent of dry weight PERCENT COMPACTION: Based on maximum dry density obtained on sample indicated by soil ID number.	1. FILL MATERIAL A. TEST RES 2. BACKFILL B. PERCEN 3. BASE COURSE WITH SP 4. SUBBASE C. RETEST Q 5. SOIL CEMENT D. MOISTUR 6. OTHER E. MOISTUR	SULTS COMPLY WITH SPECIFICATIONS COMPACTION DOES NOT COMPLY ECIFICATIONS OF PREVIOUS TEST E IN EXCESS OF SPECIFICATIONS E BELOW SPECIFICATIONS
	* (265) ASTM D 1557-91 - PROCEDURE C MODIFIE STRUMENT: TROXLER, 3430, 23213	D STANDARD COUNT	M: 666 D: 2749
REMAR	KS:	ADJUSTMENT DATA	M: D:
TE	CHNICIAN: ANDREI RAMNICEANU		ectfully submitted, ssional Se <u>rvice Industries, Inc.</u>

CC: THE HASKELL COMPANY - WILLIAM CLAYTOR, KEVIN KETT MIKE HOTTINGER, HERNANDO ANGEL, JCC - JOE BASILONE

THESE TEST RESULTS APPLY ONLY TO THE SPECIFIC LOCATIONS NOTED AND MAY NOT REPRESENT ANY OTHER LOCATIONS OR ELEVATIONS. REPORTS MAY NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT WRITTEN PERMISSION BY PROFESSIONAL SERVICE INDUSTRIES, INC.

KARL A. HIGGINS, III, PE 1 BRANCH MANAGER

8. Correspondence With Owners

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 130 of 158

Darryl Cook

From: Sent: To: Cc: Subject: Stepp, Joe W. [JWSTEPP@thehaskellco.com] Thursday, October 28, 1999 10:06 AM 'decook@james-city.va.us' Wheeler, Mike; Skirbst, Peter Anheuse-Busch Transportation Advantage project

Call back about SW Pour CRITERIA -

Darryl,

With regard to the above project, I need your assistance and input into the proposed drainage design - especially since new drainage standards have been adopted for James City County. It is imperative that a strong working relationship be developed between myself and James City County as well as my client. AB has indicated a need to expedite the Transportation Advantage project and in order to do this, I need to be able to provide you with a design that will accomplish James City County goals and AB's goals in the least amount of time as possible and with as few submittals to your agency as possible. To accomplish these objectives within the time frames given to me, I am asking for your assistance in providing me with some answers to the following questions.

1. What are the required storm events (return period and duration) that are required for flow attenuation to off-site/downstream systems?

1-yr 27 how storm. 10-yr thru principle spwy., 100-year w/ 1' free board

2. Do you accept the SCS Unit Hydrograph methodology or do you prefer another methodology (such as the Santa Barbara Urban Hydrograph methodology)?

Yes - SCS

3. Due to the existing features and topography of the site, I will have to take in some impervious areas that previously discharged off-site without any type of attenuation or pollution abatement treatment provided. Do you allow any credit for taking these areas into the proposed stormwater management system? If so, what credits are allowed?

Yes- scantisly I for 1 \$ for areas controlled.

4. I have been told that downstream development may have accounted for the pollution abatement volume from the total AB site. Is this so? Is the pollution abatement volume required for this site? Are there any options? What are the pollution abatement requirements (i.e. - the initial first flush of 1/2" runoff, the mean annual storm event?)

5. In past conversations, the 1 year - 24 hour storm was mentioned (2.8 inches/24 hours). I have been told that James City County has been requiring retention/detention basins to hold the runoff generated by this storm event for 24 hours. Does this mean that no portion of this volume can be released during the 24 hour event or is this a "Pre-Post" situation where the post conditions runoff must be held to existing conditions rate?

Released over 24 hours.

6. I have been told that downstream channels from the brewery have been designed to account for runoff from the AB site and are lined either by "rip-rap" or concrete for erosion protection? If this is so, and "Pre-Post" attenuation from the site has been met, is there a need for downstream improvements?

Not all have been a protected.

7. Does James City County regulate design of internal storm conveyance systems? Do you accept the rational method for these systems? What "Design Storm" do you require if these systems are regulated by James City County?

Require 10. year confrol - votimel OK

Stepp, Joe W.

From: Sent: To: Subject: scottt@james-city.va.us Tuesday, November 09, 1999 9:11 AM jwstepp@thehaskellco.com JCC 24-hour Rainfall

At your request, the following are the 24-hour rainfall depth values traditionally used for the SCS Type II, 24-hour storm duration in James City County.

Ì	Frequency	P, rainfal	l (inches)	
	1-year	2.8	. ,	
	2-year	3.5		
	5-year	4.7		1.44
	10-year	5.8		
r.	25-year	6.4		
	50-year	7.2		
	100-year	8.0		

Reference the new Virginia Stormwater Management Handbook (1999), Volume II, Chapter 4, Appendix 4B

Scott Thomas

Modified:

Tue 11/23/99 3:29 PM

6P-121-99 Anheuser Busch Transportation Advantage Phase I Field Investigation (Scott Thomas, Mark Eversole, James City County- Andy Dufresne, Haskell Company)

Visited project site. Looked at Phase I and future phase areas. Phase I area existing vegetated areas are large trees with sparse to moderate ground covers. All drainage from Ph 1 ends up at the 72 inch pipe just south of the onsite SW pumping station. The culvert had a drop inlet with a stainless steel metal cover. The cover did not fully seal the inlet opening. The pipe was skewed across the road and the pipe outlet had some sideslope riprap. The drainage channel along the old monorail line was heavily wooded with good cover. The proposed Ph 1 pond area was heavily wooded.

The existing pond just west of the existing/proposed Ph 1 parking area was located. The pond had an existing pool with stagnant water. The two pond risers were perforated and galvanized CMP. Although the riser pipes were not corroded and were in generally good condition, several joints were separated and the riser section were separated from the outlet barrel. The two outlet barrels appeared to be in similarly good condition; however, no outlet rock/riprap protection was present and the natural stream channel downstream of the outlets was moderately eroded. Two large inflow storm drains were present to the existing pond. The outlets at southern inlet pipe had a concrete flume pad. The flume pad was intact but severely eroded around the sides.

Based on the field investigation:

1. A large rock check dam at the southern limit of the Ph 1 work area would work well for E&SC control.

2. In Phase II, some work at the 72 inch culvert should be performed including: inlet/grate repair, riprap around the inlet sag, and evaluation of the pipes outlet structure.

3. In Phase II, if the existing pond west of the Phase I parking lot is utilized for BMP control, the existing riser/barrel system needs repaired or replaced and pond inlet pipes will require energy dissipators for high velocities. Also evaluation to control erosion of the natural downstream channel is necessary.

cc: Mark Eversole Chris Johnson Environmental File

1

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

James S. Gilmore, III Governor

John Paul Woodley, Jr. Secretary of Natural Resources

5636 Southern Boulevard Virginia Beach, VA 23462 Tel# (757) 518-2000 http://www.deg.state.va.us Dennis H. Treacy Director Francis L. Daniel

Tidewater Regional Director

October 5, 2000

Mr. Tim Good Vice President The Haskell Company 111 Riverside Avenue Jacksonville, FL 32202

RE: Change of Ownership for VPDES General Permit No. VAR450583

Dear Mr. : Good:

The State intends to process a change of ownership for the referenced permit as noted below:

Existing Owner: The Haskell Company

New Owner: Anheuser-Busch, Inc.

If you agree with the proposed change of ownership, please sign and date the attached form in the spaces provided and return it to this office within 14 days.

If you have any questions in this regard, please contact this office for clarification.

Sincerely,

arolyn E. Futnom

Carolyn E. Putnam Environmental Specialist Field

Enclosure: Agreement Form

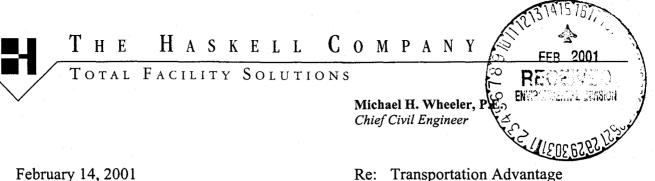
DEQ - File cc:

TRANSFER OF OWNERSHIP AGREEMENT FORM

SUBJECT: CHANGE OF OWNERSHIP OF VPDES GENERAL Permit No. VAR450583

TO: DEQ - TIDEWATER REGIONAL OFFICE 5636 SOUTHERN BOULEVARD VIRGINIA BEACH, VA 23462 ATTN: C. E. Putnam

CURRENT: The Haskell Company OWNER 111 Riverside Avenue Jacksonville, FL 32202


NEW Anheuser Busch, Inc. OWNER 7801 Pocahontas Trail Williamsburg, VA 23185

> I hereby agree to the change of ownership to General Permit No. VAR550 in accordance with your letter dated October 5, 2000. The effective date of the transfer of ownership is

*NAME:	Mr. Tim Good	
	PRINTED/TYPED	
*SIGNED:	Feither A. Hood	
	10	
TITLE:	VP	<u> </u>
	1 1	
DATE:	60/21/01	

*Must be signed by either the owner, a partner, an executive officer (President/Vice President), or a ranking elected official.

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 135 of 158

2 ,

Re: Transportation Advantage Williamsburg Brewery Anheuser-Busch, Inc.

Mr. Scott Thomas James City County 101-E Mounts Bay Road Williamsburg, VA 23187-8784

Dear Scott:

We hereby submit Record Drawings and Construction Certification Forms for the above referenced project. The information includes the following documents:

- Record Drawing of Pond No. 2 (Landmark Design Group) CC 016; SP-13-00
- Stormwater Management / BMP Facilities Record Drawing and Certification Forms (Pages 1,2, and 3 of 16)

If you have any questions or desire additional information, please feel free to contact us at (904) 791-4500.

Sincerely,

Atuland AW thinks

Michael H. Wheeler, P.E.

Enclosures

cc w/enc:

Mr. Roy Quillen Mr. Chris Johnson Mr. Peter H. Skirbst Mr. Bill Claytor

1

DEVELOPMENT MANAGEMENT

 101-E MOUNTS BAY ROAD, P.O. BOX 8784, WILLIAMSBURG, VIRGINIA 23187-8784

 (757) 253-6671
 Fax: (757) 253-6850
 E-MAIL: devtman@james-city.va.us

CODE COMPLIANCE (757) 253-6626 codecomp@james-city.va.us Environmental Division (757) 253-6670 environ@james-city.va.us Planning (757) 253-6685 planning@james-city.va.us County Engineer (757) 253-6678 Integrated Pest Management (757) 259-4116

March 1, 2001

- The Haskell Company 111 Riverside Avenue Jacksonville, FL 32202 Attn: Mr. Michael H. Wheeler, P.E. Chief Civil Engineer
- Re: Anheuser Busch Brewery Transportation Advantage Phase I & II Stormwater Management Ponds No. 1 and 2 JCC BMP ID Nos. CC 015 and CC 016

Dear Mike:

The Environmental Division has reviewed record drawings and construction certifications as submitted to our office on February 14th 2001 for the above referenced facilities. The items submitted provide as-built information for the wet ponds and their associated storm drainage systems, which are situated in the southwest corner of brewery Parcel D-2.

Based on our review of the information submitted and a concurrent field observations performed on February 28th 2001, the following items must be addressed prior to release of the developer's surety instrument for the project:

Pond 1 (Transportation Advantage Phase 1); CC 015:

Record Drawing:

- 1. Add the control structure detail from Sheet 207 of the approved design plan, annotated as necessary to show as-built conditions, to the record drawing. This detail shows specific information relative to principal control structure CS-1.
- 2. Include the maintenance plan, taken from the approved plan on the record drawing.
- 3. If possible, add the following County identifiers to the lower right hand corner of the record drawing sheet: County Plan Number SP-121-99 and BMP ID No. CC 015.

Construction - Related Items:

4. Clean and remove all debris in the vicinity of the riser (PVC pipe, wood, etc.) and seed and mulch bare soil areas directly around the riser

- 5. Seed and mulch areas around Inlet Structure ST-14. Straw bale barriers around inlets should be removed once contributing areas are adequately stabilized.
- 6. Restore the riprap outlet protection at the outfall end of the Pond 1 barrel at drainage structure ST-11. The outlet protection should be restored to the size and dimensions per approved plan Sheet 215 and be at level grade.
- 7. Ensure the pond riser is at its final design plan configuration, especially related to the 3-13/16" center drilled low flow orifice.
- 8. There is an area of impounded drainage along the west side the access road just south of Pond 1. Install a small diameter drain to properly convey this drainage to Pond 1. It is our understanding that this issue was raised and was supposed to be taken care of during construction.
- 9. Seed and mulch or landscape disturbed soil areas along the entrance road just west of the truck scale station in accordance with the approved plan.

Pond 2 (Transportation Advantage Phase 2); CC 016:

Record Drawing:

- Add the control structure detail from Sheet 215 of the approved design plan, annotated as necessary to show as-built conditions, to the record drawing. This detail shows specific information relative to the principal control structure.
- 2. Show the location of and label construction information as required for the emergency spillway on the record plan sheet.
- 3. Correct the pipe size for the storm drain on the east side of the facility. The label of 45' is incorrect for pipe size.
- 4. Two additional corrugated polyethylene pipe drains were observed on the north (construction trailer) pond slope that were not shown on the approved plan. It appears these pipes were installed to convey drainage from the construction trailer area to prevent slope erosion in the pond. If the drains are to remain as permanent conveyances, their locations and relative construction information should be shown on the record drawing plan sheet.
- 5. Include the maintenance plan, taken from the approved plan on the record drawing.
- 6. If possible, add the following County identifiers to the lower right hand corner of the record drawing sheet: County Plan Number SP-13-00 and BMP ID No. CC 016.

Construction - Related Items:

7. Fill erosion gullies and seed and mulch bare soil areas present on the north (construction trailer) slope of the pond.

£

- 8. Clean and remove sediment accumulations in the vicinity of the two storm drain outfalls located in the northeast corner of the pond. This is at the outfall of the 36 inch RCP and one of the new corrugated polyethylene storm drains which are just south of the entrance to the construction trailer area. Sediment depth is considerable at these pipe outfalls and requires removal.
- 9. Ensure the low flow orifices on the pond's principal spillway structure are at their final design plan configuration. The small diameter (east) orifice should be a 5-1/4" diameter orifice drilled into an 8-inch PVC cap. Based on field observation, a tee or turndown connection was still present at this location. Also, clean and remove debris which was present in the same pipe opening and on the concrete box weir openings. Ensure the larger (west) 12 inch orifice is properly capped and taken out of service per the design plan.
- 10. Remove silt fence downstream of the outlet protection/embankment.
- 11. Clean and remove trash and wood debris present in the corner of the pond to the east of the principal control structure.

One reproducible and one blue/black line set of the record drawings are requested once the above items are adequately addressed. Please contact me at 757-253-6639 if you have any further comments or questions.

Sincerely.

Scott J. Thomas, P.E. Civil Engineer Environmental Division

cc: R.J. Glidden, Anheuser Busch Resident Construction Engineer

G:\SWMProg\AsBuilts\SP-93-00cc016

ł

ΤΗΕ ΗΑSKELL СОМРАНУ

TOTAL FACILITY SOLUTIONS

Michael H. Wheeler, P.E. Chief Civil Engineer

March 13, 2001

Re: Response to Letter of March 01, 2001

Mr. Scott J. Thomas, P.E. Civil Engineer James City County Development Management 101-E Mounts Bay Road Williamsburg, VA 23187-8784

Dear Mr. Thomas:

Transmitted herewith are our responses to your letter of March 01, 2001.

POND 1 (TRANSPORTATION ADVANTAGE PHASE 1) CC015:

Record Drawings:

COMMENT 1: Add the control structure detail from Sheet 207 of the approved design plan, annotated as necessary to show as-built conditions, to the record drawing. This detail shows specific information relative to principal control structure CS-1.

RESPONSE: Not within scope of requirements. Construction drawings include details necessary for constructability. This level of detail is not necessary for, nor required for record drawings.

COMMENT 2: Include the maintenance plan, taken from the approved plan on the record drawing.

RESPONSE: Not within scope of requirements. Plan was previously provided with the permit application.

COMMENT 3: If possible, add the following County identifiers to the lower right hand corner of the record drawing sheet: County Plan Number SP-121-99 and BMP ID No. CC 015. **RESPONSE:** The information has been added.

Construction - Related Items:

COMMENT 4: Clean and remove all debris in the vicinity of the riser (PVC pipe, wood, etc.) and seed and mulch bare soil areas directly around the riser. **RESPONSE:** Completed 3/9/01. Mr. Scott J. Thomas March 13, 2001 Page 3

COMMENT 3: Correct the pipe size for the storm drain on the east side of the facility. The label of 45' is incorrect for pipe size.

RESPONSE: Corrections have been made.

COMMENT 4: Two additional corrugated polyethylene pipe drains were observed on the north (construction trailer) pond slope that was not shown on the approved plan. It appears these pipes were installed to convey drainage from the construction trailer area to prevent slope erosion in the pond. If the drains are to remain as permanent conveyances, their locations and relative construction information should be shown on the record drawing plan sheet. **RESPONSE:** Corrections have been made to the record drawings.

COMMENT 5: Include the maintenance plan, taken from the approved plan on the record drawing.

RESPONSE: Not within scope of requirements. Plan was previously provided with the permit application.

COMMENT 6: If possible, add the following County identifiers to the lower right hand corner of the record drawing sheet: County Plan Number SP-13-00 and BMP ID No. CC 016. **RESPONSE:** Information has been added.

Construction - Related Items

COMMENT 7: Fill erosion gullies and seed and mulch bare soil areas present on the north (construction trailer) slope of the pond. **RESPONSE:** Completed 3/9/01.

COMMENT 8: Clean and remove sediment accumulations in the vicinity of the two storm drain outfalls located in the northeast corner of the pond. This is at the outfall of the 36-inch RCP and one of the new corrugated polyethylene storm drains which are just south of the entrance to the construction trailer areas. Sediment depth is considerable at these pipe outfalls and requires removal.

RESPONSE: Completed 3/9/01.

COMMENT 9: Ensure the low flow orifices on the pond's principal spillway structure are at their final design plan configuration. The small diameter (east) orifice should be a 5-1/4" diameter orifice drilled into an 8-inch PVC cap. Based on field observation, a tee or turndown connection was still present at this location. Also, clean and remove debris which was present in the same pipe opening and on the concrete box weir openings. Ensure the larger (west) 12-inch orifice is properly capped and taken out of service per the design plan.

RESPONSE: These features have been confirmed and certified by the engineer.

Mr. Scott J. Thomas March 13, 2001 Page 2

COMMENT 5: Seed and mulch areas around Inlet Structure ST-14. Straw bale barriers around inlets should be removed once contributing areas are adequately stabilized. **RESPONSE:** Completed 3/9/01.

COMMENT 6: Restore the riprap outlet protection at the outfall end of the Pond 1 barrel at drainage structure ST-11. The outlet protection should be restored to the size and dimensions per approved plan Sheet 215 and be at level grade. **RESPONSE:** Completed 3/9/01.

COMMENT 7: Ensure the pond riser is at its final plan configuration, especially related to the 3-13/16" center drilled low flow orifice. **RESPONSE:** This has been confirmed and certified by the engineer.

COMMENT 8: There is an area of impounded drainage along the west side of the access road just south of Pond 1. Install a small diameter drain to properly convey this drainage to Pond 1. It is our understanding that this issue was raised and was supposed to be taken care of during construction.

RESPONSE: A drainpipe cannot be installed at this location. Doing so would introduce storm water into the clean side of the pond. All inlets are above the forebay baffle. It is intended that this shoulder run-off be introduced into the gutter flow and collected at Inlet ST-9.

COMMENT 9: Seed and mulch or landscape disturbed soil areas along the entrance road just west of the truck scale station in accordance with the approved plan. **RESPONSE:** Completed 3/9/01.

POND 2 (TRANSPORTATION ADVANTAGE PHASE 2) CC 016:

Record Drawing:

COMMENT 1: Add the control structure detail from Sheet 215 of the approved design plan, annotated as necessary to show as-built conditions, to the record drawings. This detail shows specific information relative to the principal control structure.

RESPONSE: Not within scope of requirements. Construction drawings include details necessary for constructability. This level of detail is not necessary for, nor required for record drawings.

COMMENT 2: Show the location of and label construction information as required for the emergency spillway on the record plan sheet.

RESPONSE: The earthen berm west of the outlet structure serves as the emergency spillway (see design). The feature is indicated on the record plan.

Mr. Scott J. Thomas March 13, 2001 Page 4

COMMENT 10: Remove silt fence downstream of the outlet protection/embankment. **RESPONSE:** Completed 3/9/01.

COMMENT 11: Clean and remove trash and wood debris present in the corner of the pond to the east of the principal control structure. **RESPONSE:** Completed 3/9/01.

If you have any questions or desire additional information please feel free to call me at (904) 791-4577 or e-mail mhwheele@thehaskellco.com.

Sincerely,

• .

Michael Ht While

Michael H. Wheeler, P.E. Chief Civil Engineer

To: Mr. Scott Thomas

Company: James City County

From: Al Ramsay

Attached please find:

Specifications

Original Mylar

] Drawings

🗌 Report

Prints

Plans

Date: March 14, 2001

Subject: Anheuser Busch Brewery Stormwater Pond No. 1

Transmitted as checked below:

- For your use
- As requested
- For review and comment
- For approval
- Approved

CopiesDateDrawing No.Description12/14/0112109-12110WOriginal Mylar12/14/0112109-12110WRecord Drawing13/13/01Letter from Haskell Company

Notes:

Copies	Enclosures	
1. <u>File:</u>		LandMark Design Group, Inc.
2Mike Wheeler - 1 copy print	\boxtimes	
3		
4	\Box	
5	\Box	By: <u>AJR/cjp</u>

To: SCOTT THOMAS

Company: JAMES CITY COUNTY, ENVIRONMENTAL

From: PETER FARRELL, L.S.

Date: 03/15/01

Subject: ANHEUSER BUSCH POND RECORD DRAWINGS

LMDG Job No.: 1990223-000.20

Attached please find:	Transmitted as checked below:
X Prints	X For your use
🗌 Plans	X As requested
Specifications	For review and comment
Drawings	🗌 For approval
🗌 Report	Approved
Letter	
X MYLARS	

Copies	Date	Drawing No.	Description
1	02/08/01	12109AW	ADDENDUM TO RECORD DRAWING POND 1
1	02/08/01	12110AW	ADDENDUM TO RECORD DRAWING POND 2

Notes:

Copies	Enclosures	
1. <u>File:</u>		LandMark Design Group, Inc.
2	U	
3		
4		
5		By:PF
Engineers + Planners + Surveyo	s Landscape Architects	 Environmental Consultants
4029 Ironbound Road, Suite 100, Williamsburg, V	A 23188 (757) 253-2975 FAX: 1	757) 229-0049 Imdg@landmarkdowb.com

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 145 of 158

9. Inspection Records (Construction Phase)

City County	James City County Environmental Division Stormwater Management / BMP Inspection Report Detention and Retention Pond Facilities					
Jamestown 1607	CC015	COUNTY PLAN	· SP-121-99			
Database Inventory No. (if kn	own):	COUNTY PLAN FINAL CONSTRUCTION	INSPECTION			
Name of Facility: ANHEVS	ER BUSCH TRANSPORT	- <u>PH1</u> BMP No.: <u>1 of 2</u> Date:	2/28/01			
Location: WET	POND #1 - Southur	est Corner of Site PARCEL	D-2			
	HEUSER-BUSCH					
	Thomas, MIKE W	louson				
	t Extended Deten					
	Cloudy, High 40	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	pplicable, mark NA, otherwise mar		2420			

O.K. - The item checked is in adequate condition and the maintenance program is currently satisfactory. Routine - The item checked requires attention, but does not present an immediate threat to the function of the BMP. Urgent - The item checked requires immediate attention to keep the BMP operational and prevent damage to the facility.

Provide an explanation and details in the comment column, if routine or urgent are marked.

i

Facility Item.	О.К.	Routine	Urgent	Comments
Embankments and Sid	le Slopes:	POND EX	CAVATED T	YPE
Grass Height	\times			SLEED + MULCHED, SIDE SLOPES,
Vegetation Condition	×			ok,
Tree Growth	\checkmark			NOWE,
Erosion	\neq			NONE
Trash & Debris	×			MINOR WOODBENS & LEAVES.
Seepage	×			None Observed.
Fencing or Benches				NIA. SIDE SLOPES 3H: IN OF FLATTER.
Interior Landscaping/	Planted Are	as: 🗖 None 🗆 Const	ructed Wetland/Shal	low Marsh D Naturally Established Vegetation
Vegetated Conditions	X			WET POOL WITH INTERIOR
Trash & Debris				3H: IV OF FLATTER SNESLOPES.
Floating Material				
Erosion				
Sediment				
Dead Plant				
Aesthetics				
Other				,
Services 1	PARKIN	6 LOT " True	k Scale	Area. Some Adjouent Worded Area.

Facility Item	0.K.	Routine	Urgent	Comments
Water Pools Pe	ermanent Poo	ol (Retention Basin) 🛛 S	hallow Marsh (Detenti	on Basin) 🗖 None (Detention Basin)
Shoreline Erosion	\star			MINDE @ POR SHORE INTERFACE.
Algae	X			None.
Trash & Debris	X			None.
Sediment	X			L 6" @ RISPR.
Aesthetics	×			LOOR CLEAN,
Other				ROCK FOREBAY WITHIN DOND. CK
Inflow Stuctures (Desc	ribe Locati	ons): 1 PIPE IN	CP) FLOW (4 UBM	MERCED) NOTTH NEAR ROAD
Condition of Structure	4			ROCK FOREBAY WITHIN DOND. CK MERCED) NORTH NEAR ROAD REP W/ END SECT.
Erosion	X			CLEAN.
Trash and Debris	\boldsymbol{X}			None.
Sediment	X			Minimal.
Aesthetics	\boldsymbol{X}			0K,
Other				·
Principal Flow Control	Structure ·	- Intake, Riser, etc. (Desc	ribe Location): Be	or w/ SKIMMERS,
Condition of Structure	X			NEW STRUCTURE.
Corrosion	X			
Trash and Debris	X			
Sediment	X			- 6 " C RISER
Aesthetics	\mathbf{X}			
Other				G"PVC : 3-4" OPEN ORIFICE. SMALL DIA CIRC; DRAIN + WEIRS,
Principal Outlet Struct	ure - Barre	l, Conduit, etc. : 0/5	RCP TO INCE	ETS TO OUTFALL (15") STRUCTURE CS-1
Condition of Structure	\times			
Settlement	\prec			
Trash & Debris	\times			
Sediment	X			MHLID PULLED. MINIMAL SEDIMENT.
Erosion		×		OPC OUTFALL NEEDS RE-ESTAB.
Other				
Emergency Spillway (C	Overflow):	Nowe ROA	ONAY 15 OU	EF-TOP DEVILE
Vegetation	×			ASPHALT ROAD.
Lining	X			NIA
Erosion	×			
Trash & Debris	X			
Other				
OP @ OU	TFALL	TU SIZE, DIM	IENSION OF	PLAN, OP O LEVEL GRADE.

Ŷ

Facility Item	0.K.	Routine	Urgent	Comments
Nuisance Type Condit	ions:		· · · ·	
Mosquito Breeding	X	······································		
Animal Burrows	×	· · · · ·		
Graffiti	X			
Other	×	• 2444 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		
Surrounding Perimete	er Conditions	: :	· · ·	
Land Uses	\checkmark	· · · · · · · · · · · · · · · · · · ·		PARLING, TRAVELWAY & MOODS.
Vegetation	X			
Trash & Debris	X			
Aesthetics	X			
Access /Maintenance Roads or Paths	\times	ADEQUATE		TARU TEVEL SCALE. CALL SUTT RAMDALL C 253-2136 FOR ALLESS.
Other		Alle de la constant d		
D SEE REA	N + MI MOJE TORE		ACRUSS R NLET (FI	ADWAY. RST OJS INCET) ON PER PLAN
D En.		- 13/16" LOW FLO ternal Rating:4	ow Orifice f	CAPPED WEIR WEIR CAPPED O RISER INLET. CONFIG. SMAU DREW CIRC
Signature: Title:	with normer,	Thomas, A ENV. DIN JU	2.E. 10	Date: 02/28/01

SWMProg\BMP\CoInspProg\DetRet.wpd

11. Miscellaneous

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 150 of 158

WATERSHED	CC	MAINTENANCE PLAN	Yes	CTRL STRUC DESC	Conc. Rise
BMP ID NO	015	SITE AREA acre	23.18	CTRL STRUC SIZE inches	4.2' x 4.
PLAN NO	SP-121-99	LAND USE	Gen Industrial	OTLT BARRL DESC	RCP
TAX PARCEL	(51-03)(01-01)	old BMP TYP	•	OTLT BARRL SIZE inch	15
PIN NO	5130100003	JCC BMP CODE	A3 Wet ED Pond		
CONSTRUCTION DATE	12/28/2000	POINT VALUE	10	EMERG SPILLWAY	Yes
PROJECT NAME	Anheuser Busch Trans Advan	t Phase I		DESIGN HW ELEV	77.53
FACILITY LOCATION	Pond # 1 - Brewery Parcel D-2	2 2 2		PERM POOL ELEV	74.5
CITY-STATE	Williamsburg, Va. 23185	SVC DRAIN AREA acres	3.95	2-YR OUTFLOW cfs	1.26
URRENT OWNER	Anheuser Busch Inc.			10-YR OUTFLOW cfs	5.36
OWNER ADDRESS	One Busch Place			REC DRAWING	Yes
OWNER ADDRESS 2		SERVICE AREA DESCRI	Parking & Truck S	cale Area	
CITY-STATE-ZIP CODE	St. Louis, MO 63188	IMPERV AREA acres	3	CONSTR CERTI	Yes
WNER PHONE		RECV STREAM	UT of Halfway Cr	eek	
AINT AGREEMENT	Yes	EXT DET-WQ-CTRL	Yes	LAST INSP DATE	2/28/2001
MERG ACTION PLAN	No	WTR QUAL VOL acre-ft	0.126	INTERNAL RATING	4
		CHAN PROT CTRL	Yes	MISC/COMMENTS	
Get Last BMP No			CHAN PROT VOL acre-ft 0.7669		has trash
		SW/FLOOD CONTROL	Yes	rack & skimmer. Call 253-2 access.	136 for
	Return to Menu	GEOTECH REPORT	Yes		
		-			

CC015

Contents for Stormwater Management Facilities As-built Files

Each file is to contain:

- 1 As-built plan
- Completed construction certification
- **Construction Plan**
- **Design Calculations**
- Watershed Map
- 6 Maintenance Agreement
- 7. Correspondence with owners
- (8) Inspection Records
- 9. Enforcement Actions

JAMES CITY COUNTY STORMWATER DETENTION BASIN DESIGN CHECKLIST

I. STORMWATER MANAGEMENT COMPUTATIONS

- A. HYDROLOGY An SCS-based methodology is required for stormwater detention structures with watersheds exceeding 20 acres. Under 20 acres, other generally accepted methodologies such as the modified rational, critical storm are allowable. See Chapter 5, VESCH for more information.
 - RCN determinations: predeveloped and ultimate development land use scenarios.
 - Time of concentration: predeveloped and ultimate development indicating overland, shallow concentrated, and channel flow components.
 - Hydrograph generation: predevelopment and ultimate development peak flows for 2-, 10-, and 100-year design storms.

B. RESERVOIR ROUTING

- Storage indication routing of ultimate development hydrographs for 2-, 10-, and 100-year design storms. Structure must discharge up to 10-year storm through principal spillway and pass the 100-year storm with 1 foot of freeboard through a combination of the principal and emergency spillways.

<u>HIA</u> Downstream hydrographs at established study points (if required).

C. HYDRAULIC COMPUTATIONS

Elevation-Storage (curve)
 Weir/Orifice control - extended detention control.
 M/A
 Weir/Orifice control - riser 2 year control.
 M/A
 Weir/Orifice control - riser 10 year control.
 M/A
 Weir/Orifice control - riser 10 year control.
 M/A
 Inlet/Outlet (barrel) control - (all storms).
 M/A
 Check for barrel control prior to riser orifice flow to prevent slug flow-water hammer conditions.
 M/A
 Emergency spillway capacity.
 M/A
 Elevation-Discharge (provide supporting calculations and/or design

HANDLED WITHIN FLOUD ROUTING PROGRAM

Elevation-Discharge (provide supporting calculations and/or design assumptions).

D. MISCELLANEOUS COMPUTATIONS

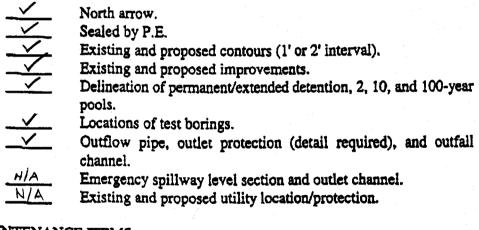
Water quality volume for permanent pool.

Water quality volume for extended detention with drawdown computations.

N/A	Anti-seep collar design.
NA	Filter diaphragm design (or alternative method of controlling seepage).
·	Riser structure flotation analysis (factor of safety = 1.2 min.).
NIA	Danger reach study (if required).
NIA	100 year floodplain impacts (if required).

II. SOILS INVESTIGATION

Geotechnical report.


Minimum boring locations: borrow area; pool area; principal spillway; top of dam near one abutment or emergency spillway if provided.

Boring logs with Unified Soil Classification, and soil description, with depth to bedrock, seasonal water table.

III. STORMWATER MANAGEMENT PLAN

A. PLAN VIEW 1"=50' or less (40', 30', etc.)

1. GENERAL TERMS

B. MAINTENANCE ITEMS

Person or organization responsible for maintenance.

• Inspection and maintenance agreement.

Maintenance access from public right-of-way or publicly traveled road. Maintenance easement, minimum 15 feet around 100-year pool elevation.

Forebay (if proposed).

_ Temporary crossion and sediment control measures for pond construction.

N/A N/A

NIA

- Fence, or minimum 6' wide safety shelf for public safety.
- ____ Provisions for use as a temporary sediment basin with cleanout schedule and instructions for conversion to permanent facility.

C.

PRINCIPAL SPILLWAY PROFILE AND ASSOCIATED DETAILS

1. EXISTING GROUND AND PROPOSED GRADE

Not Applicable

____ Dam side slopes labeled.

_____ Top width labeled (per VESCH).

Removal of unsuitable material under proposed dam (per geotechnical report).

2. CORE TRENCH

NOT APPLICABLE

- <u>Materials</u> (per construction specifications)
- Bottom width (4' minimum or greater as dictated by geotechnical report)
- _____ Side slopes (1:1 maximum steepness)

_____ Depth (4' minimum or greater as dictated by the geotechnical report)

3. RISER OR SIMILAR STRUCTURE (DETAIL REQUIRED)

Materials (as required)

All structure dimensions

Control orifice dimensions

Trash rack - removable - for each release (detail as required for construction)

 N/Λ Anti-vortex device (detail as required for construction) \ll

- Proper structure footing
- Maintenance access
- 4. BARREL

N/A_	Materials (ASTM C-361 or as required)
N/A	Support for concrete barrels-concrete cradles, etc. (detail required)
NIA	Gauge and corrugation size for metal barrels

5. SEEPAGE CONTROL

 $\frac{|H|}{|A|}$ Phreatic line (4:1 slope measured from the intersection of the dam and the principal spillway design high water.

a. ANTI-SEEP COLLAR

-3-

Spacing and location on barrel (located at least 2' from a pipe joint)

b. FILTER DIAPHRAGM

Design based on latest SCS methods and certified by a professional geotechnical engineer

6. OUTFALL PROTECTION

- Size for maximum barrel release (but not greater than 10 year storm)
 - Cross-section at end of barrel in accordance with receiving channel section

Outfall dimensions

____ Slope - 0%

Rip-rap size, VDOT Classification

____ Thickness (1.5 Times Maximum Stone Diameter)

Approved filter fabric (nonwoven)

7. ELEVATIONS

<u>NIA</u> Top of dam - construction height and settled height (10% settlement)

N/A Crest of emergency spillway

<u>Crest of riser structure</u>

<u>Inverts of control release orifice/weirs</u>

- Pools: permanent; extended detention; 2-year; 10-year; 100-year; and appropriate safety storms
- Appropriate freeboard per SCS National Engineering Handbook, provide minimum one foot of free board above the 100-year design highwater.
 - _____ Inlet and outlet inverts of pipes (with slopes in %)

D. CROSS SECTION THROUGH DAM ALONG CENTERLINE

NOT APPLICABLE

- Existing ground
- Proposed grade
- _____ Top of dam constructed and settled
- Location of emergency spillway with side slopes labeled (emergency spillway in cut)
- _____ Bottom of core trench (4' minimum)
- Location of each soil boring
- _____ Barrel location
- Existing and proposed utility location/protection

E. EMERGENCY SPILLWAY PROFILE

Not	- AP	PLICABLE			
-	E E	xisting ground			
-		liet, level (control)	and outlet s	ections per	SCS
		pillway and crest e		•	
CONST	IRUCT	ION SPECIFICAT	IONS		
TO	BE	PROVIDED	IN THE	NEAR	FUTURE
 		equence of constru			
		are of base flow du	iring constru	ction (if ne	cessary)
	, Si	ite preparation			

Earthfill: _____ Material. _____ Placement, _____ Core trench

Structural backfill

Pipe conduits

Concrete _____

Rip-Rap and slope protection

Fencing

Stabilization

Inspection and Certification by Engineer

COMMENTS:

F.

BY:_____

DATE:

sdbdc.txt

-5-

CC015_ANHEUSER_BUSCH_TRANS_ADVANT_PHASE_1_WET_POND_1_BREWERY_PARCEL_D-2 - 157 of 158

