

CERTIFICATE OF AUTHENTICITY

THIS IS TO CERTIFY THAT THE FOLLOWING ELECTRONIC RECORDS ARE TRUE AND ACCURATE REPRODUCTIONS OF THE ORIGINAL RECORDS OF JAMES CITY COUNTY GENERAL SERVICES DEPARTMENT- STORMWATER DIVISION; WERE SCANNED IN THE REGULAR COURSE OF BUSINESS PURSUANT TO GUIDELINES ESTABLISHED BY THE LIBRARY OF VIRGINIA AND ARCHIVES; AND HAVE BEEN VERIFIED IN THE CUSTODY OF THE INDIVIDUAL LISTED BELOW.

BMP NUMBER: 99189

DATE VERIFIED: November 03, 2017

QUALITY ASSURANCE TECHNICIAN:

Jonathan Craig

LOCATION: WILLIAMSBURG, VIRGINIA

Stormwater Division

MEMORANDUM

DATE: November 03, 2017

SCANNER: Jonathan Craig, Assistant Environment Coordinator

RE: Files Approved for Scanning

Maintenance Agreements: NO *(in file as of scan date)*

General File ID or BMP ID: 99189

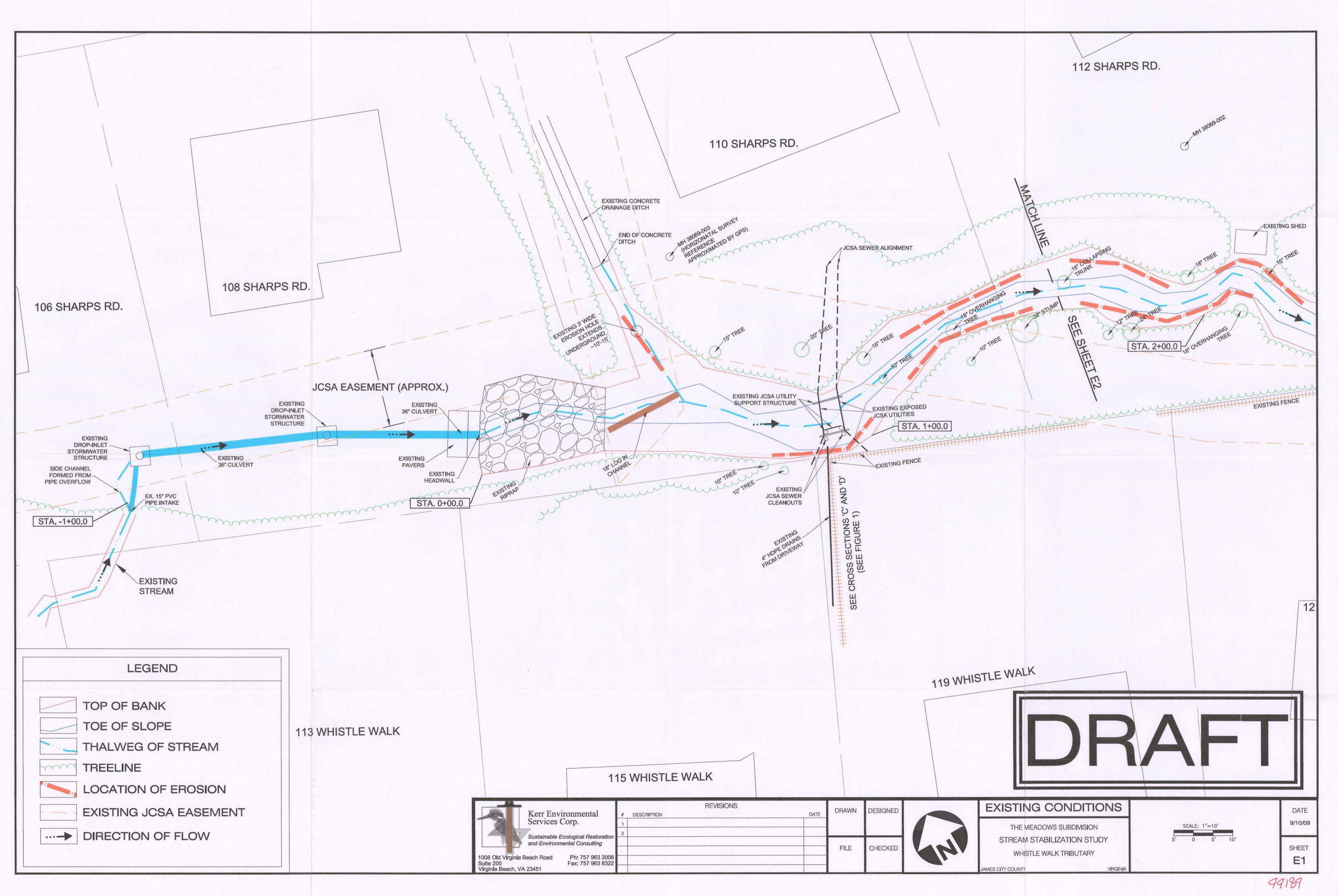
PIN: 2320700001A	
Owner Name:	MORRISON, SHARON C TRUST
Legal Description:	COMM AREA KRISTIANSAND OFF PARK
Local Address:	151 KRISTIANSAND DR

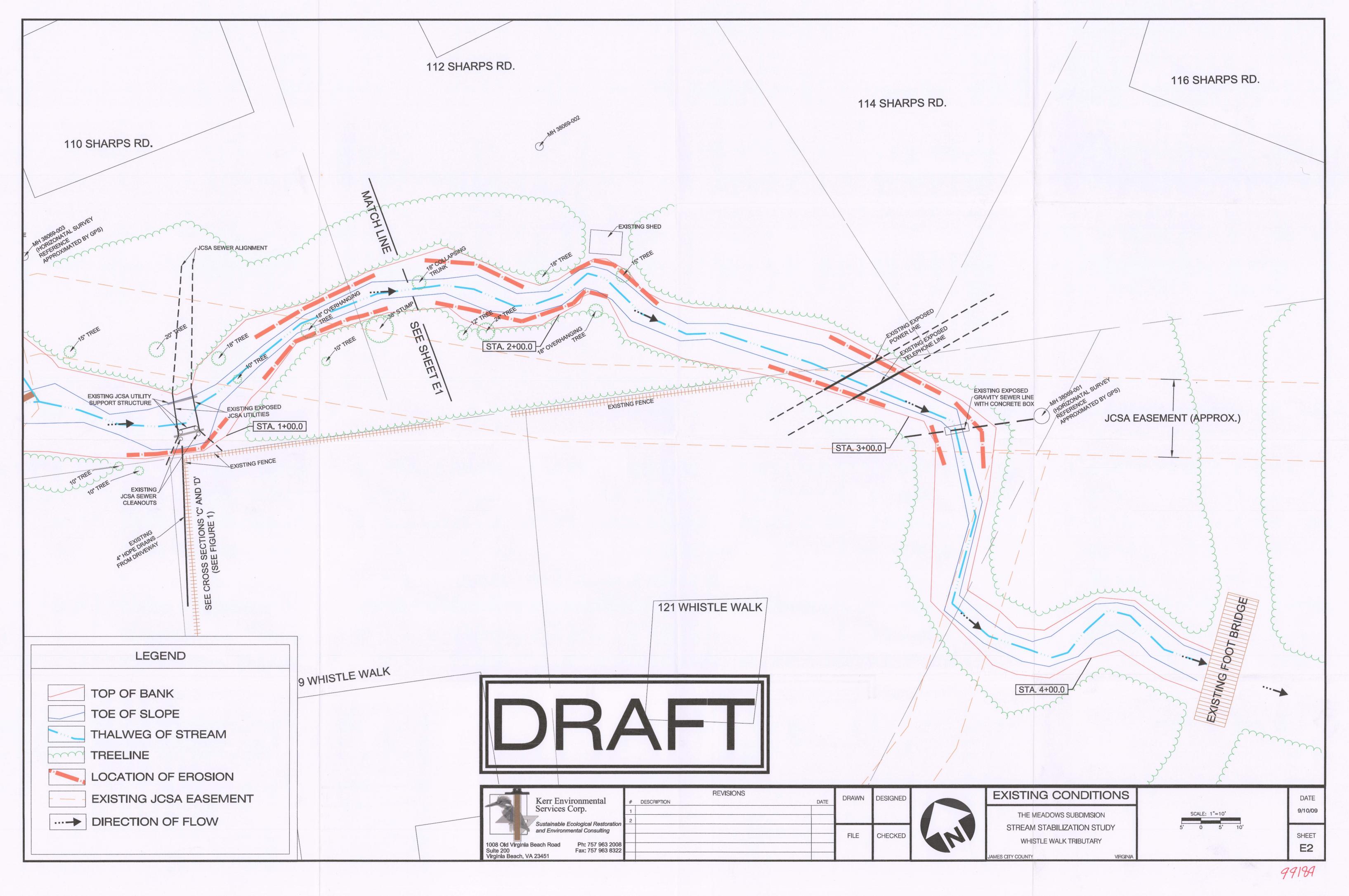
Easement:

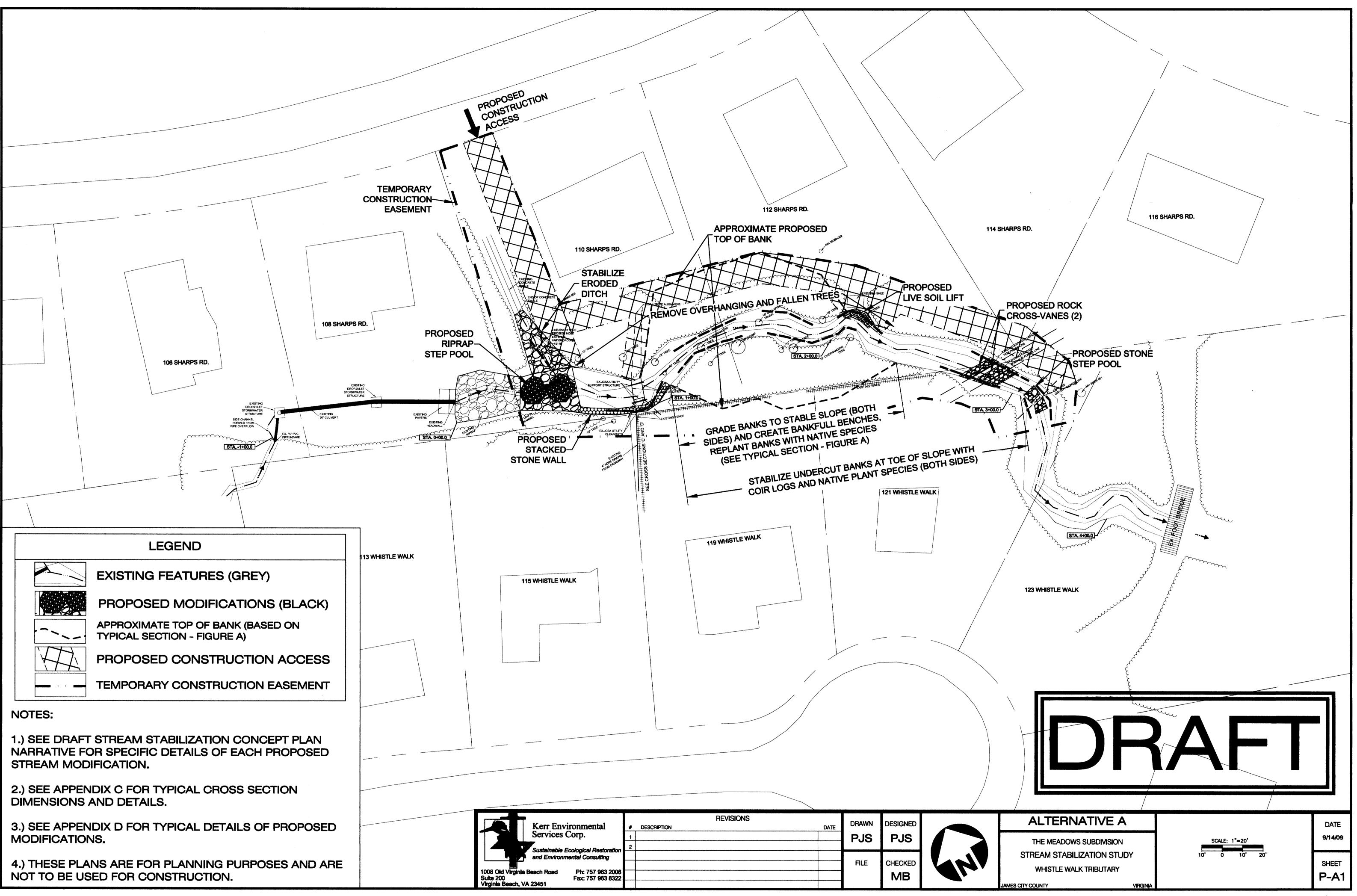
Recorded Plat:

Comments: Electronic file created. 6 drawings scanned and added. Hard copies destroyed. Bookmarks left in to populate with future pages.

THE FOLLOWING DOCUMENTS ARE NOT CERTIFIED.

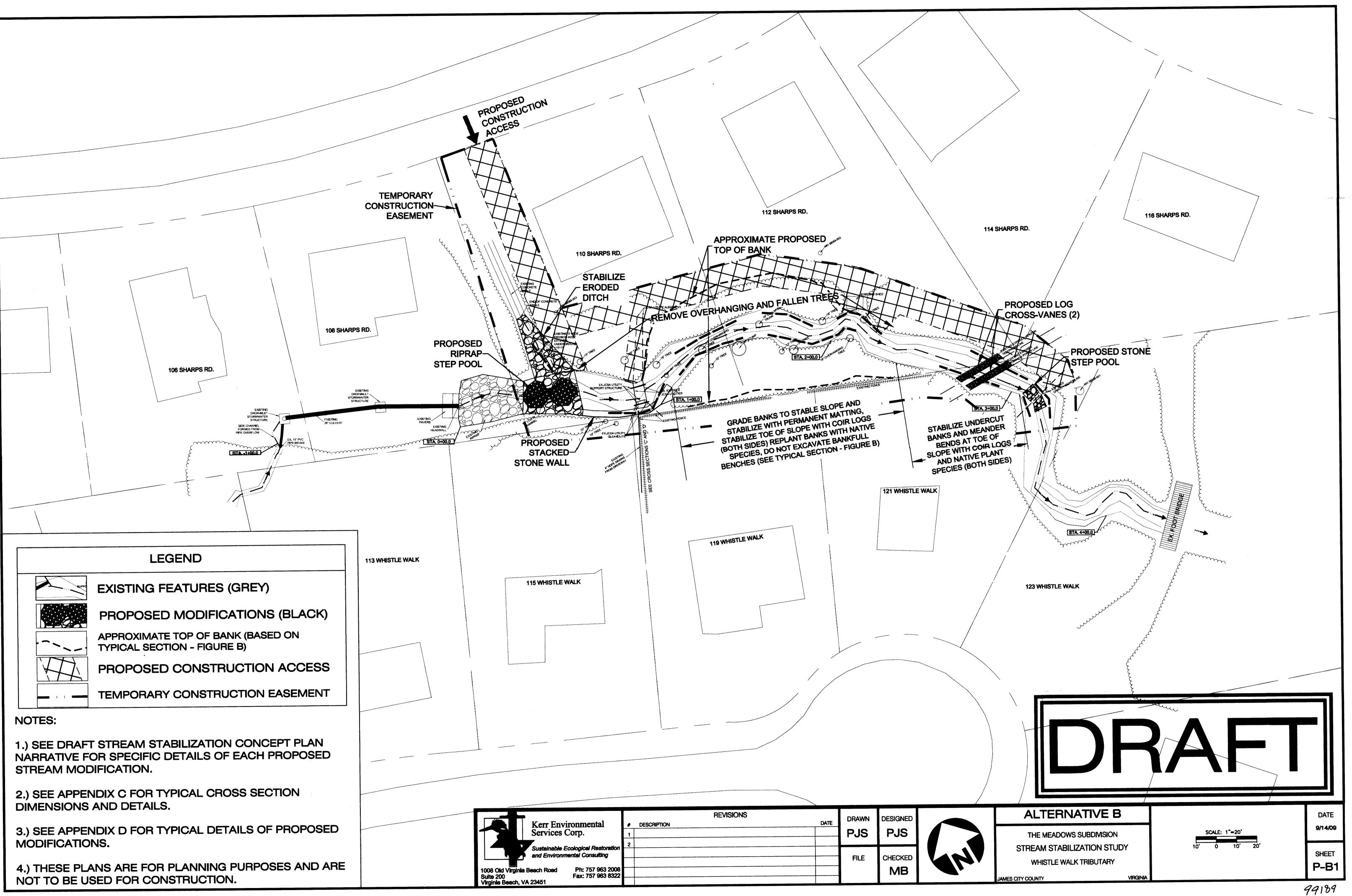

Kristiansand Subdivision

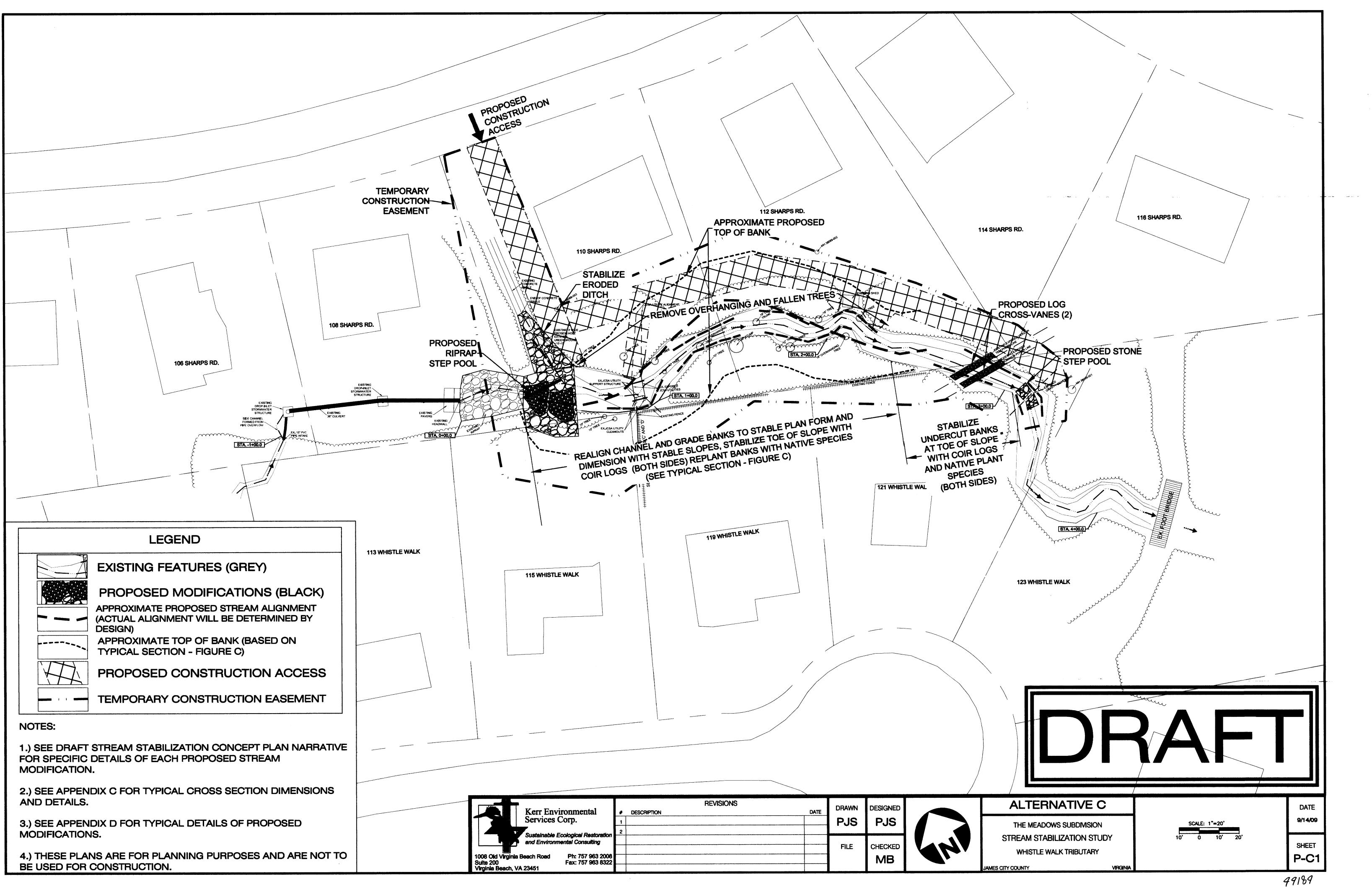

1. Maintenance Agreement


2. Deeds/Easements/ Agreements/Property Records

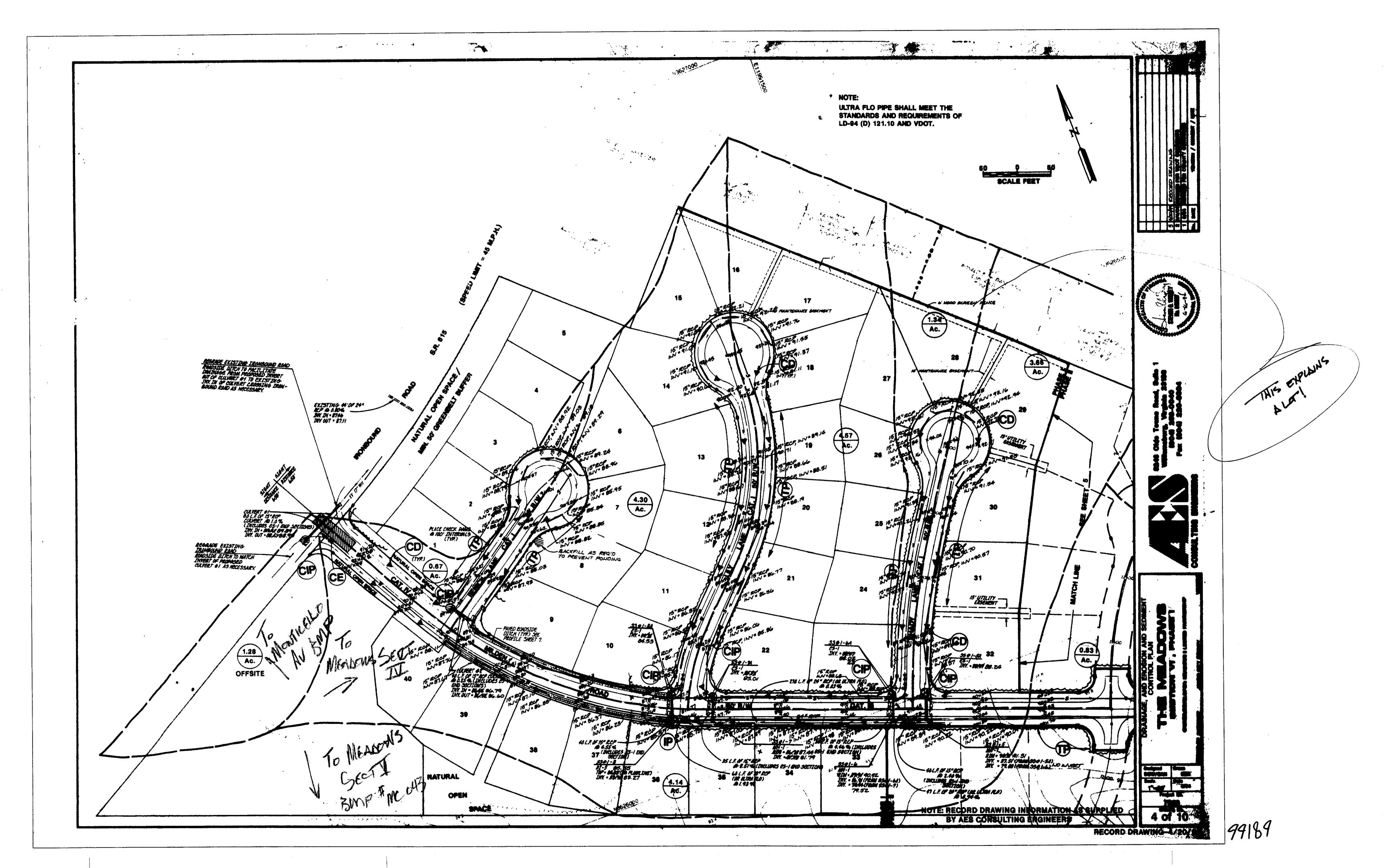
3. Record Drawings(As Builts)

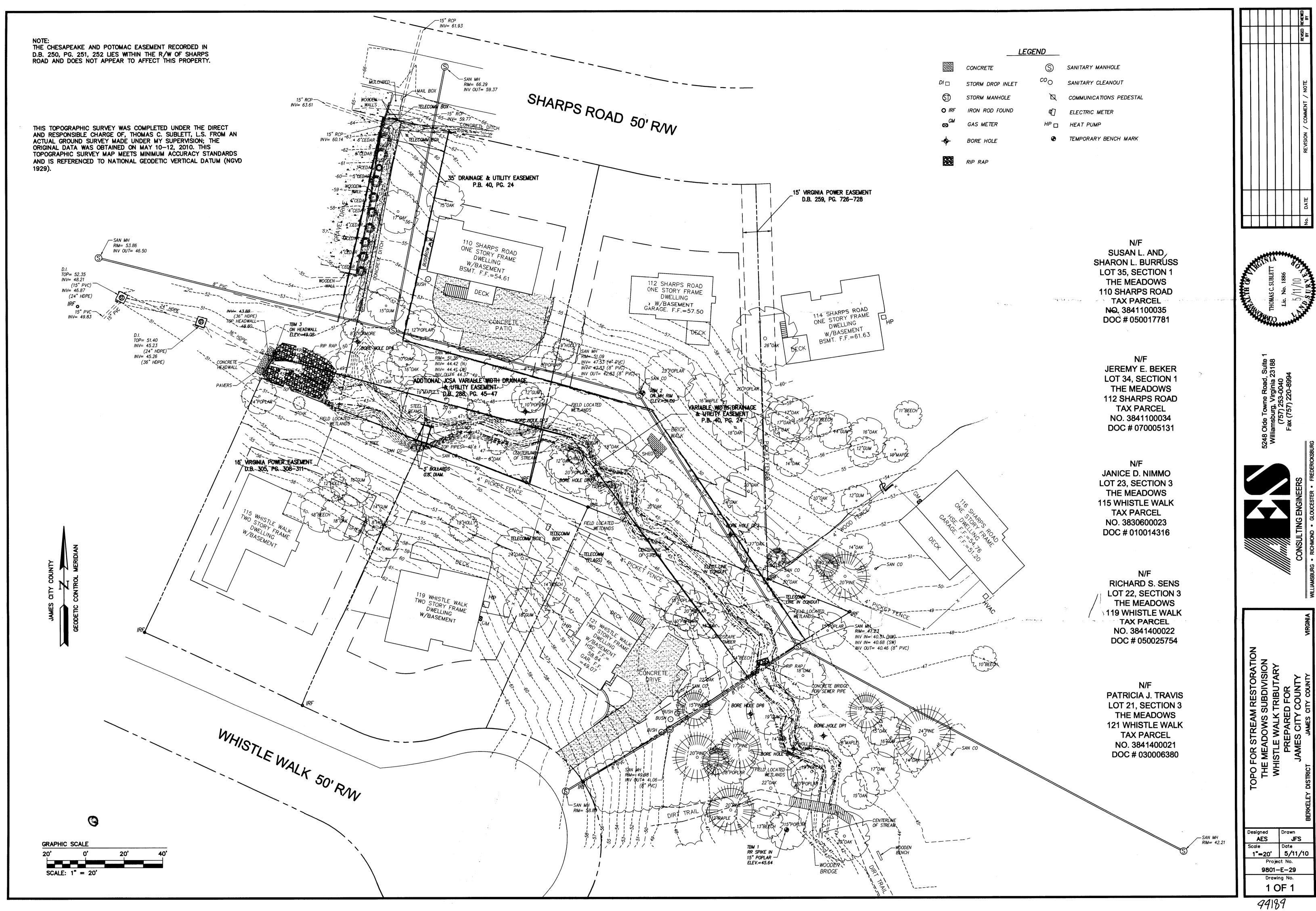
4. Construction Drawings

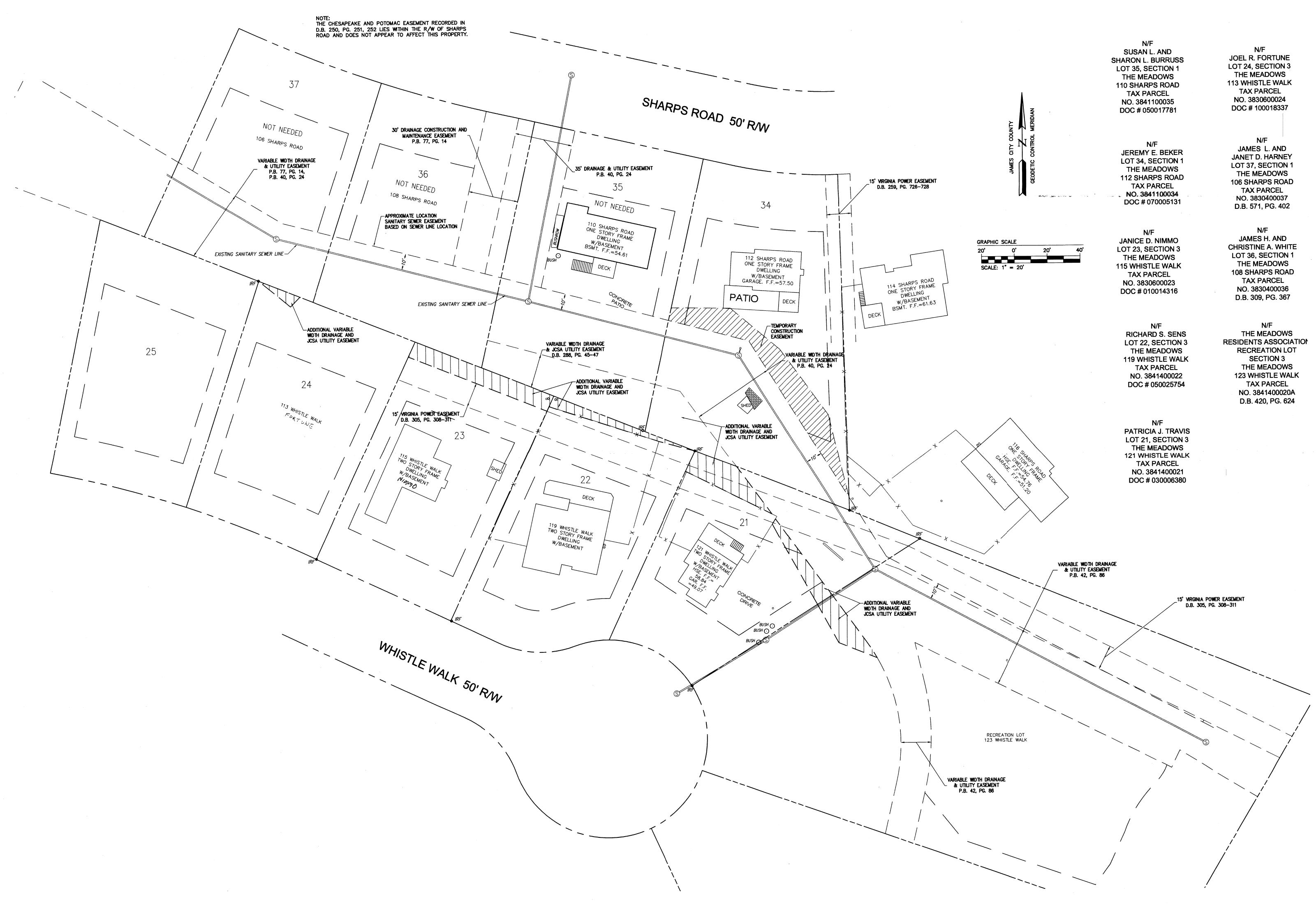


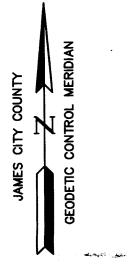


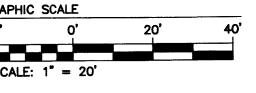
		•		/
Kerr Environmental Services Corp. Sustainable Ecological Restoration	REVISIONS	DRAWN PJS	DESIGNED PJS	
and Environmental Consulting1008 Old Virginia Beach RoadPh: 757 963 2008Suite 200Fax: 757 963 8322Virginia Beach, VA 23451Fax: 757 963 8322		FILE	CHECKED MB	

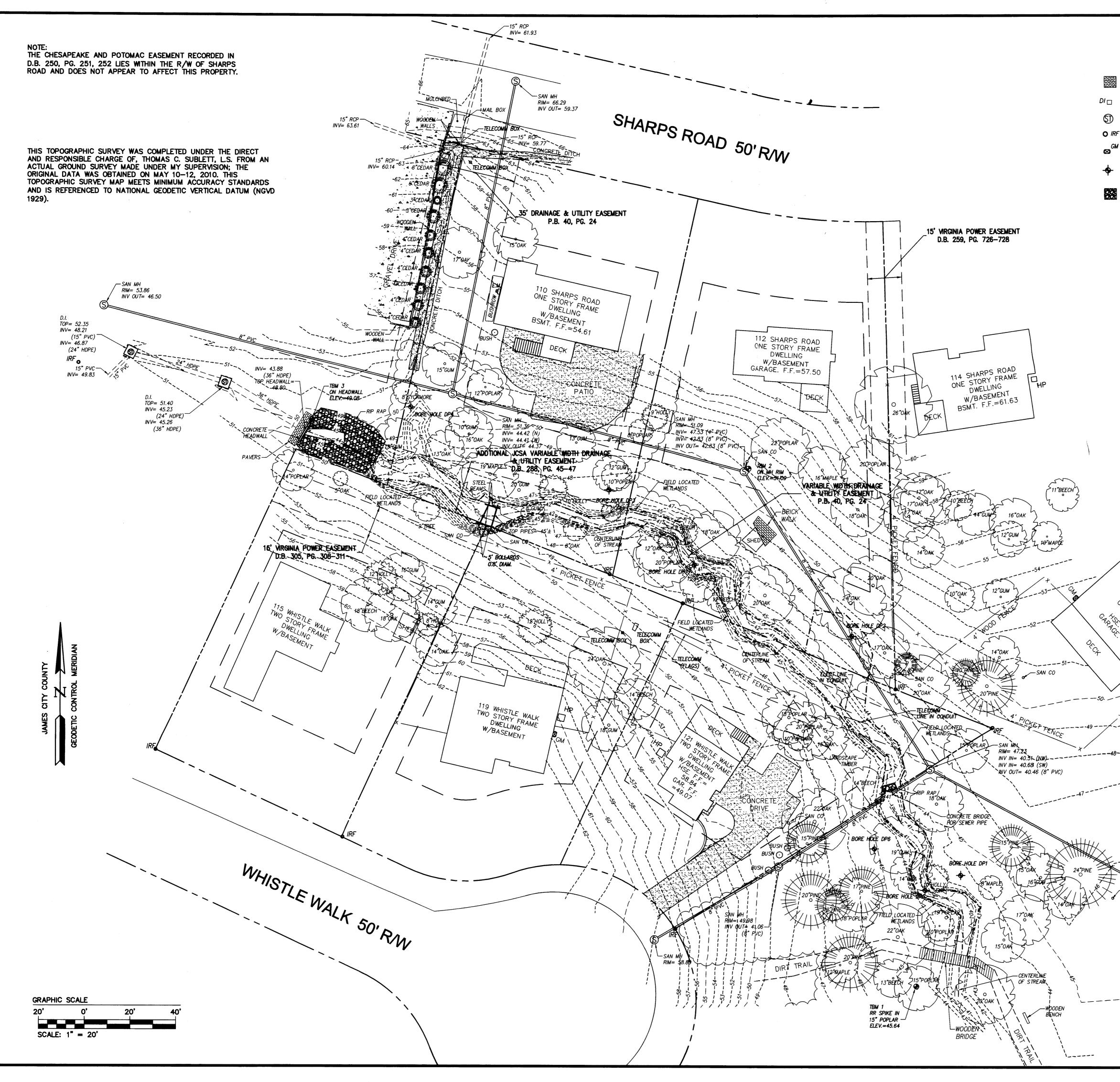


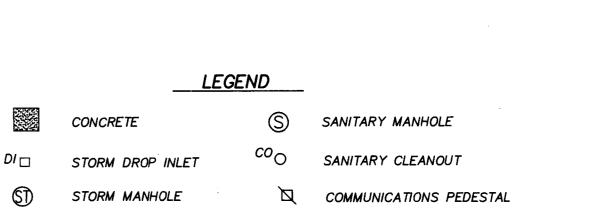



Kerr Environmental Services Corp.	REVISIONS # DESCRIPTION DATE 1	drawn PJS	DESIGNED PJS	
Sustainable Ecological Restoration and Environmental Consulting 1008 Old Virginia Beach Road Suite 200 Virginia Beach, VA 23451		FILE	CHECKED MB	




Kerr Environmental Services Corp.	DATE	DRAWN PJS	DESIGNED PJS	
Sustainable Ecological Restoration and Environmental Consulting 1008 Old Virginia Beach Road Suite 200 Virginia Beach, VA 23451		FILE	CHECKED MB	





•

q

ELECTRIC METER

TEMPORARY BENCH MARK

RIP RAP

010

CTASE DUNT

5.0

10"BEEGH

IRON ROD FOUND

GAS METER

BORE HOLE

O IRF

G

 $\boldsymbol{\alpha}$

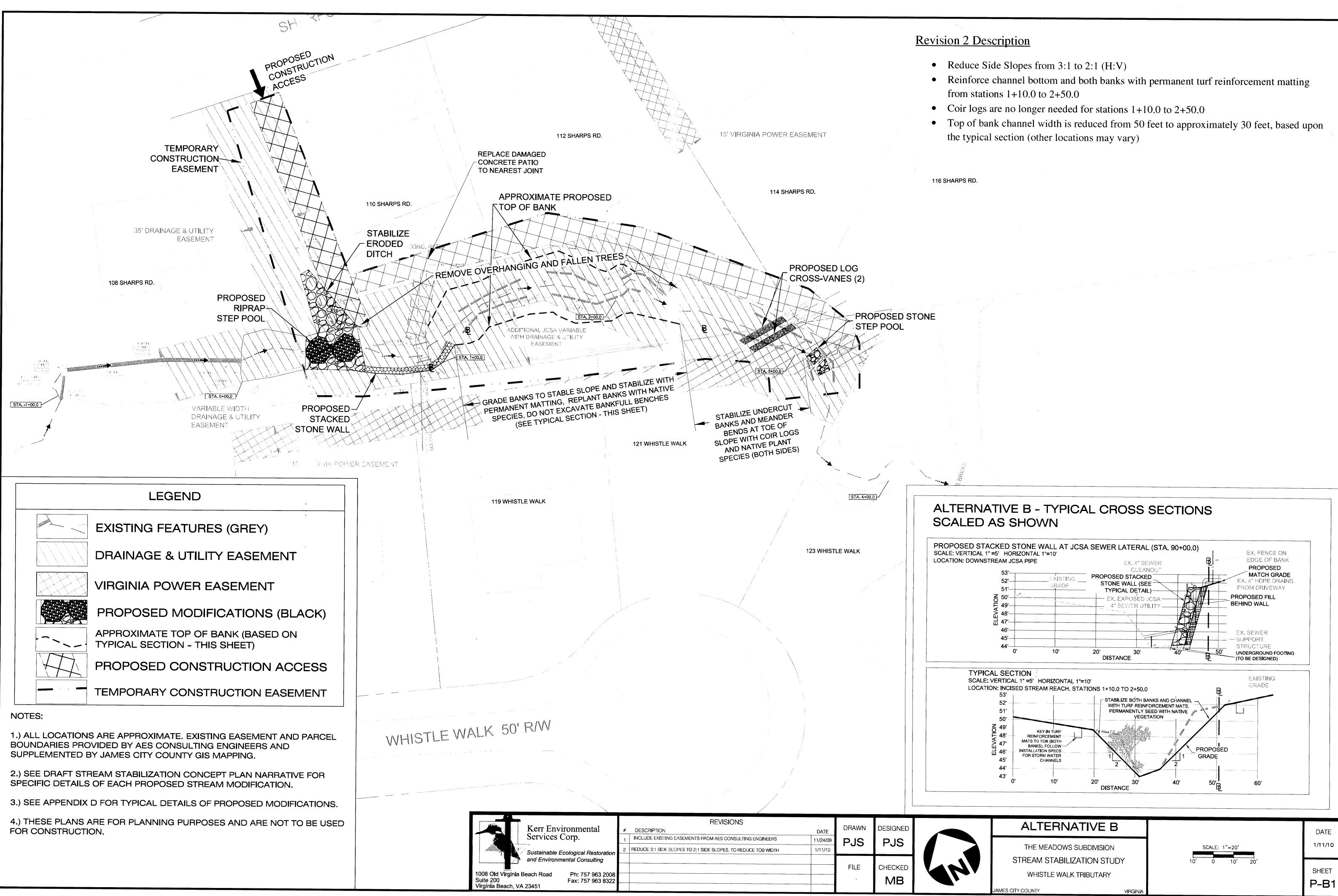
N/F SUSAN L. AND SHARON L. BURRUSS LOT 35, SECTION 1 THE MEADOWS **110 SHARPS ROAD** TAX PARCEL NO. 3841100035 DOC # 050017781

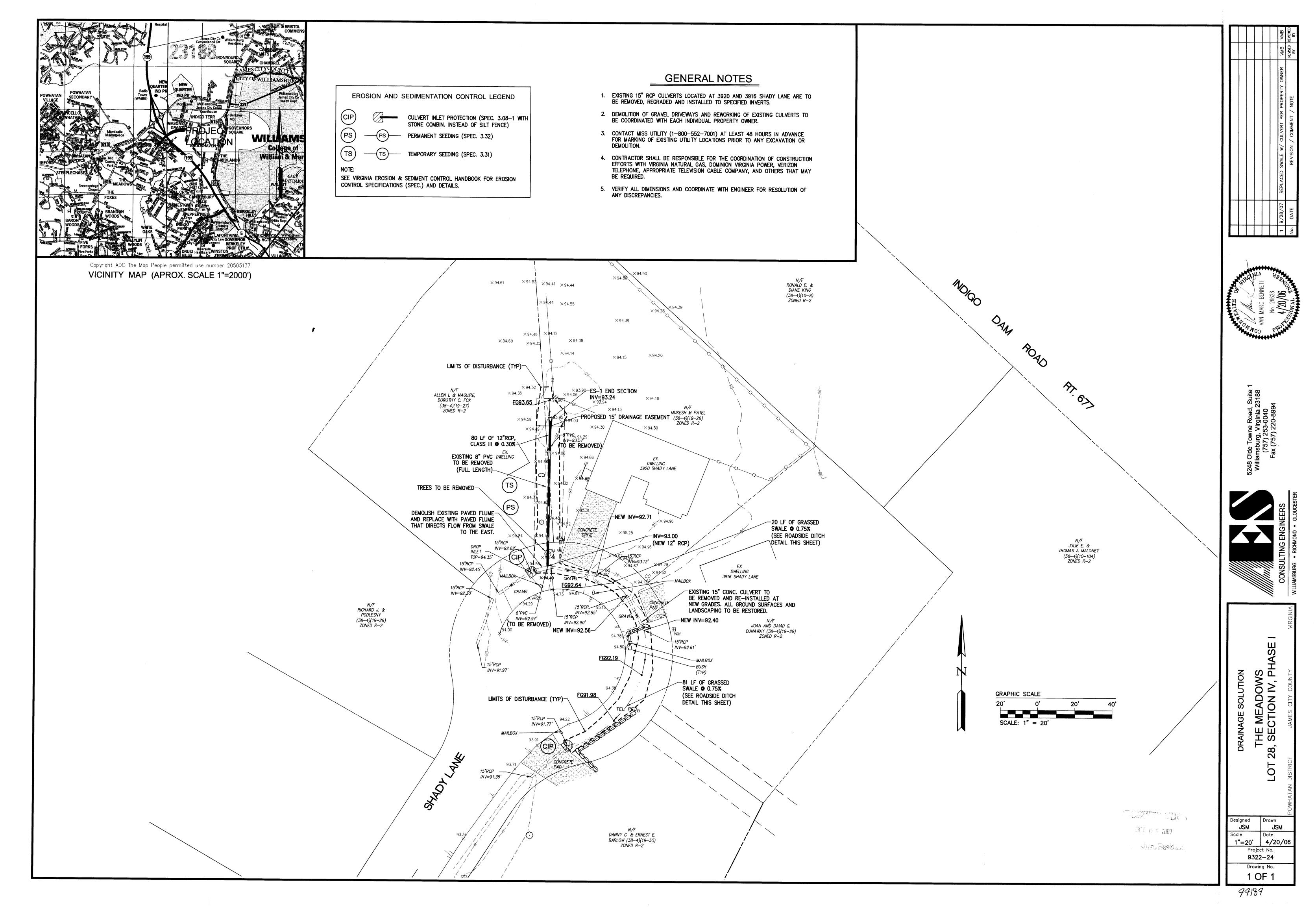
N/F JEREMY E. BEKER LOT 34, SECTION 1 THE MEADOWS 112 SHARPS ROAD TAX PARCEL NO. 3841100034 DOC # 070005131

N/F JANICE D. NIMMO LOT 23, SECTION 3 THE MEADOWS 115 WHISTLE WALK TAX PARCEL NO. 3830600023 DOC # 010014316

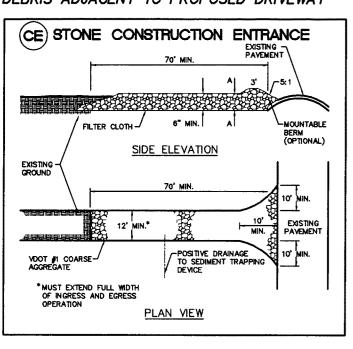
N/F **RICHARD S. SENS** LOT 22, SECTION 3 THE MEADOWS **119 WHISTLE WALK** TAX PARCEL NO. 3841400022 DOC # 050025754

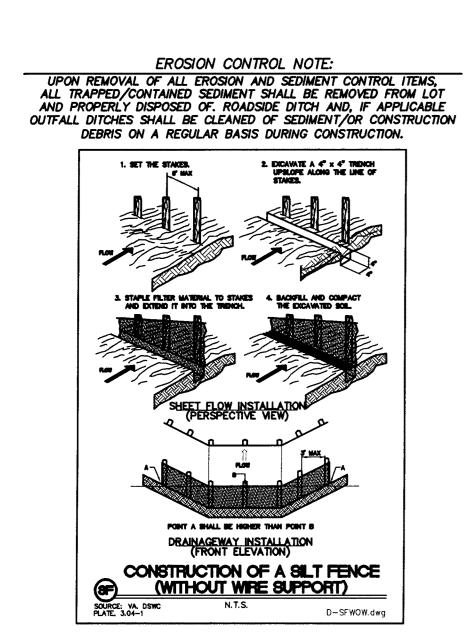
N/F PATRICIA J. TRAVIS LOT 21, SECTION 3 THE MEADOWS **121 WHISTLE WALK** TAX PARCEL NO. 3841400021 DOC # 030006380

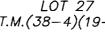


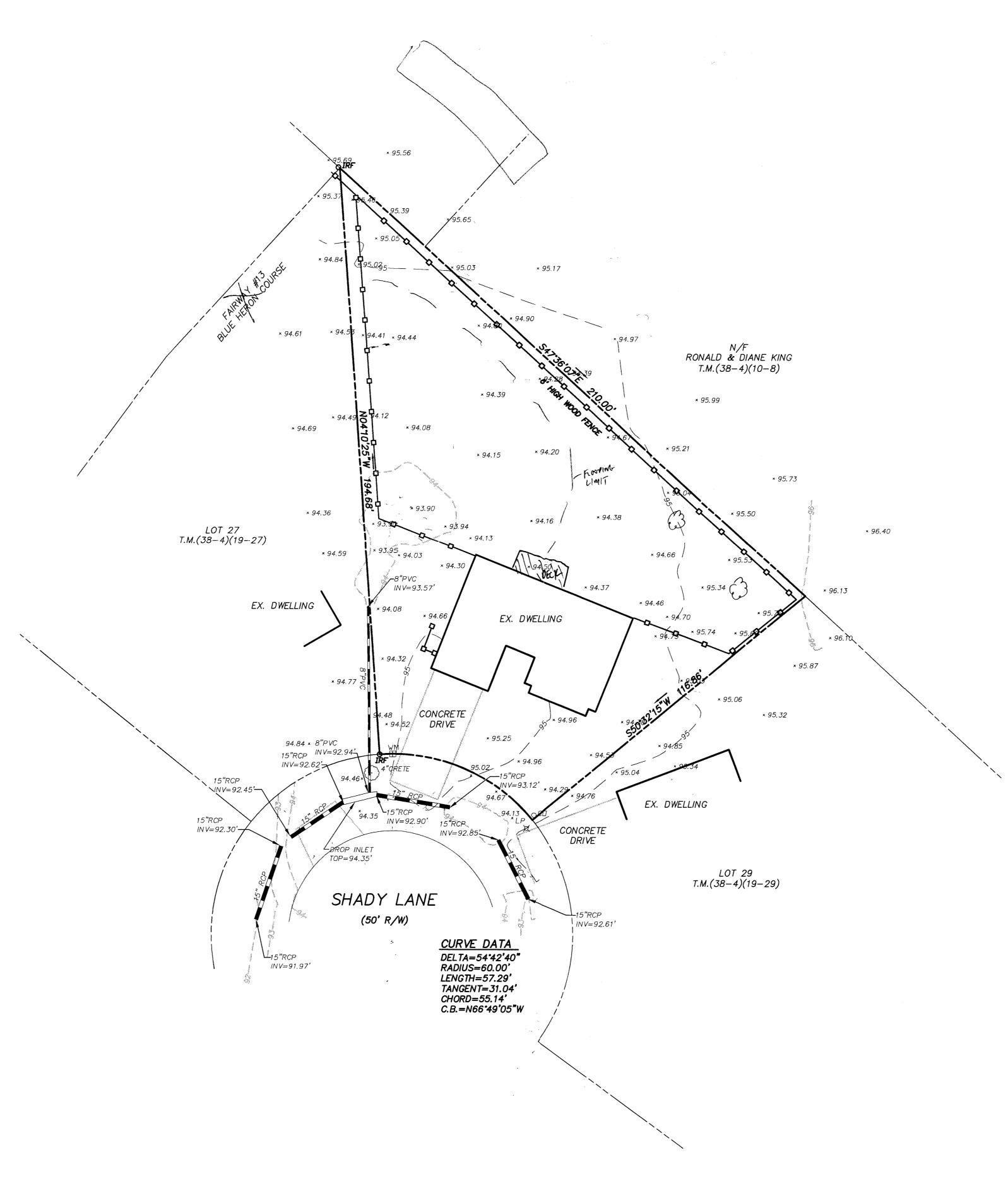


WALK TRIBUTARY PARED FOR CITY COUNTY JAMES CITY COUNTY PO FOR STF THE MEADO WHISTLE W PREP JAMES (C Designed **AES** Drawn JFS Date Scale 1*=20' 5/11/10 Project No. 9801-E-29 Drawing No. 1 OF 1

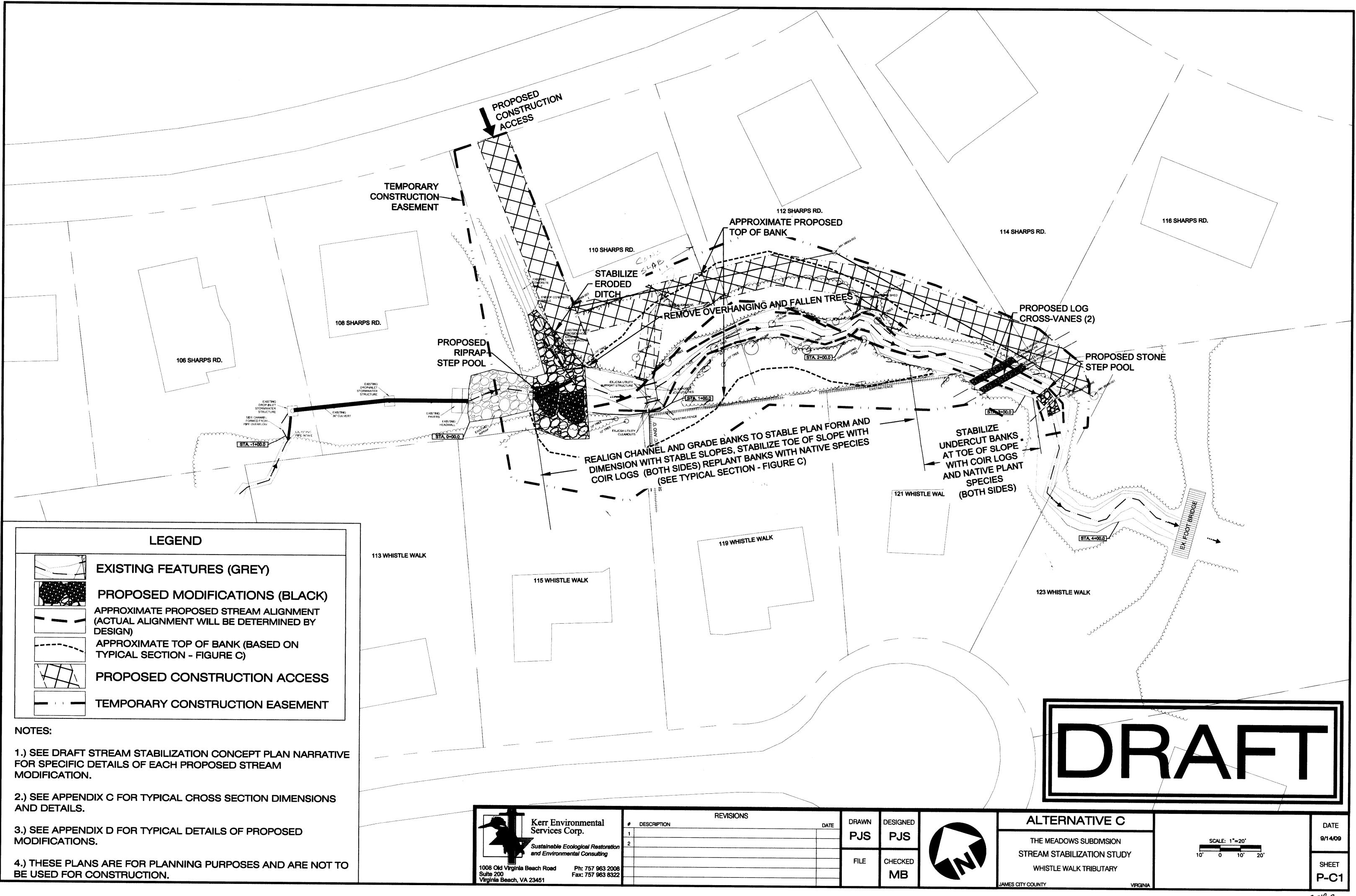

99189

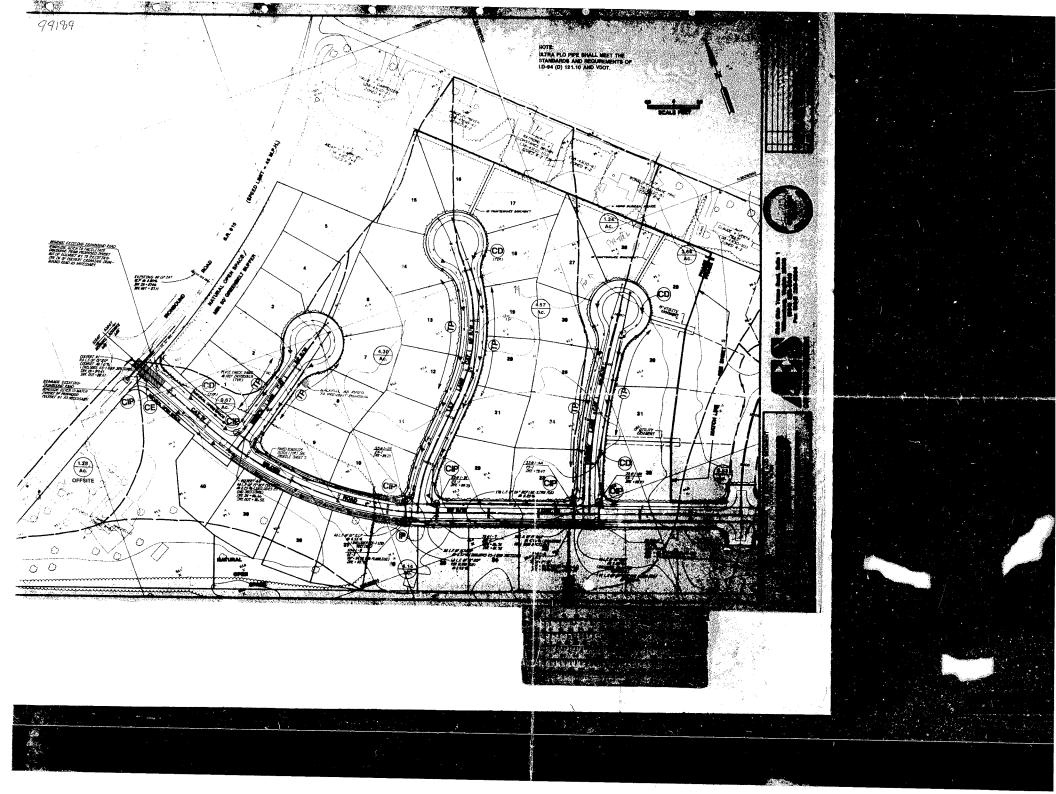

HP 🗆 HEAT PUMP •

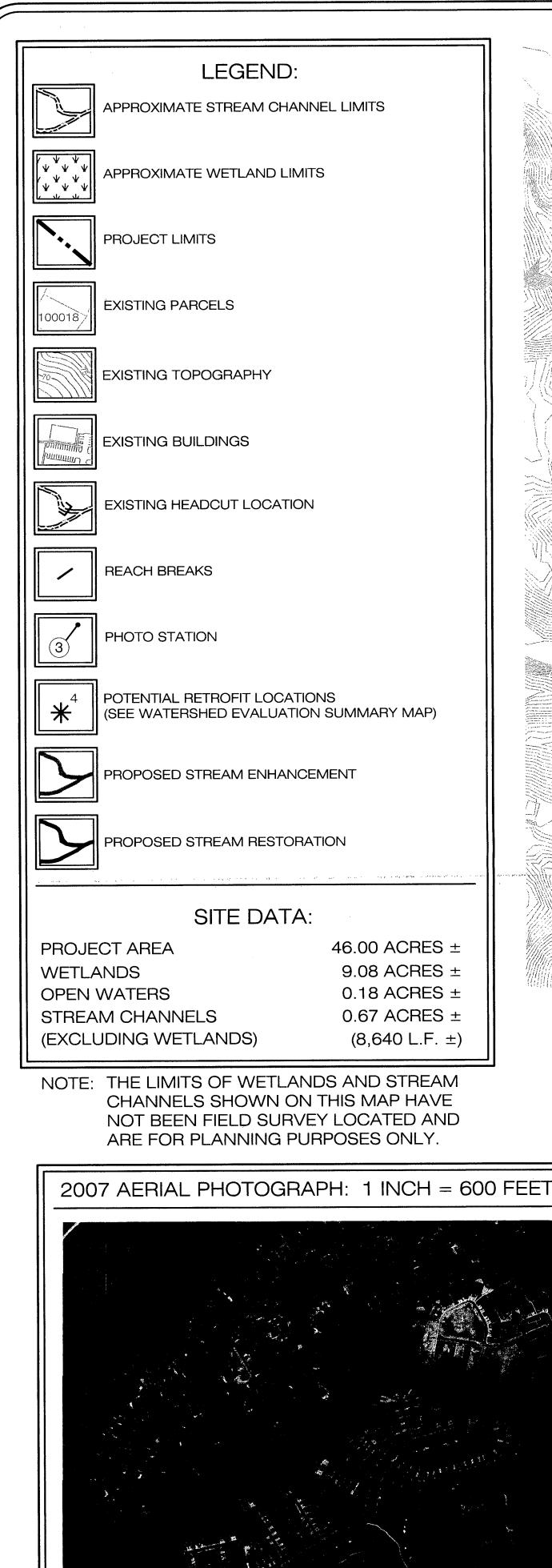




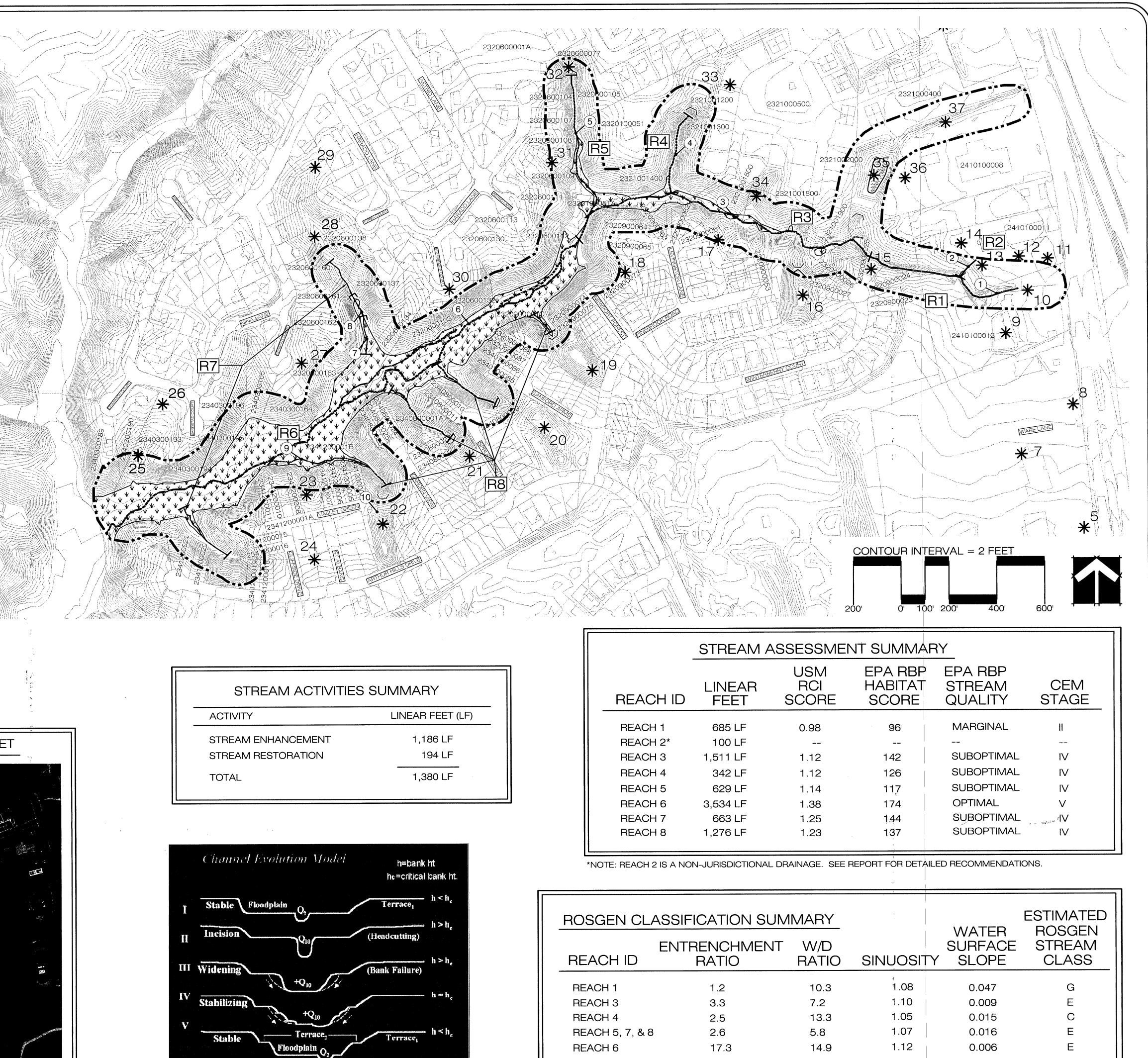
(CE) NOTE: PROVIDE STONE CONSTRUCTION ENTRANCE DURING CONSTRUCTION. CONTRACTOR RESPONSIBLE FOR KEEPING NORTH TURNBERRY FREE OF MUD AND DEBRIS ADJACENT TO PROPOSED DRIVEWAY



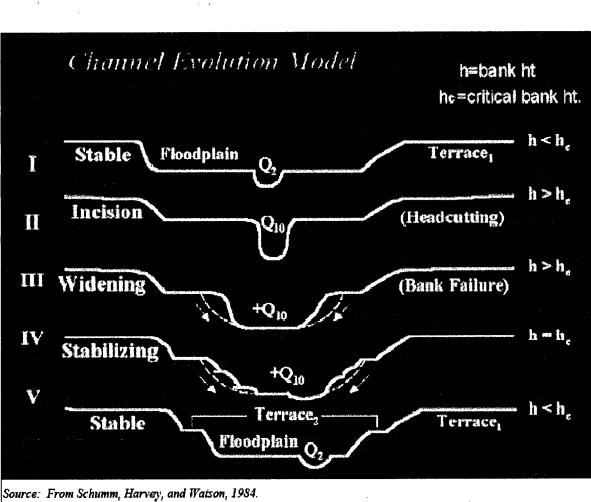

AREA OF LOT 28 16.665 S.F.± 0.38 ACRES± GRAPHIC SCALE 20' -40⁴ SCALE: 1'' = 20'524 V ING RG \mathbf{O} -NOTE: CONTRACTOR TO VERIFY ALL TOPOGRAPHICAL MAP 28, SECTION 4, PHA THE MEADOWS I À L BUILDING DIMENSIONS PRIOR TO BEGINNING CONSTRUCTION. (DWELLING DIMENSIONS AND PROPERTY LINE TIES SHOWN ARE COMPUTED TO THE FACE OF STUD, "FRAME LINE".) 回 NOTE: THIS PROPERTY LIES IN ZONE X, (AREAS DETERMINED TO BE OUTSIDE THE 500 YEAR FLOOD PLAIN) PER F.I.R.M. #510201-0035 B, DATED 2/6/91. 0 NOTES: ALL DISTURBED AREAS ARE TO BE SEEDED, SODDED, OR MULCHED WITHIN 7 DAYS OF REACHING FINAL GRADE.
 NO RPA CHESAPEAKE BAY AREAS ARE LOCATED ON OR ADJACENT TO PROPERTY SHOWN. Designed Drawn AES AES Scale Date 1"=20' 3/21/05 Project No. TAX PARCEL: (38–4)(19–28) STREET ADDRESS: #3920 SHADY LANE 25692 Drawing No. 1 of 1


LEGEND IRF= IRON ROD FOUND B.S.L.= BUILDING SETBACK LINE WM= WATER METER CO= SEWER CLEAN OUT

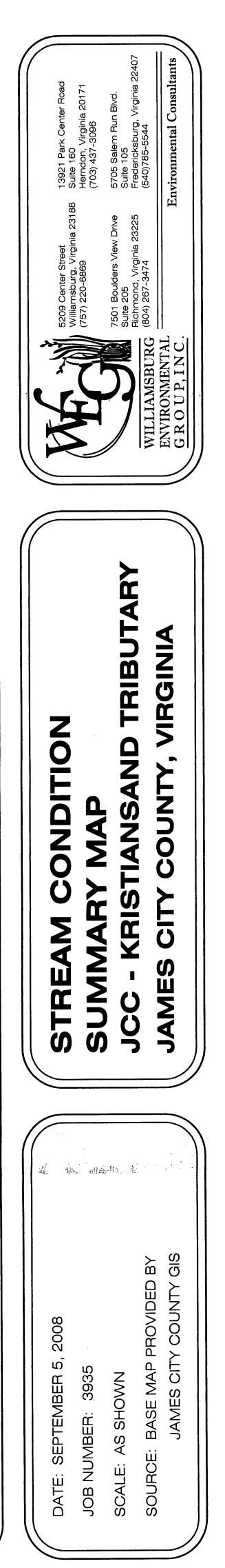
99189

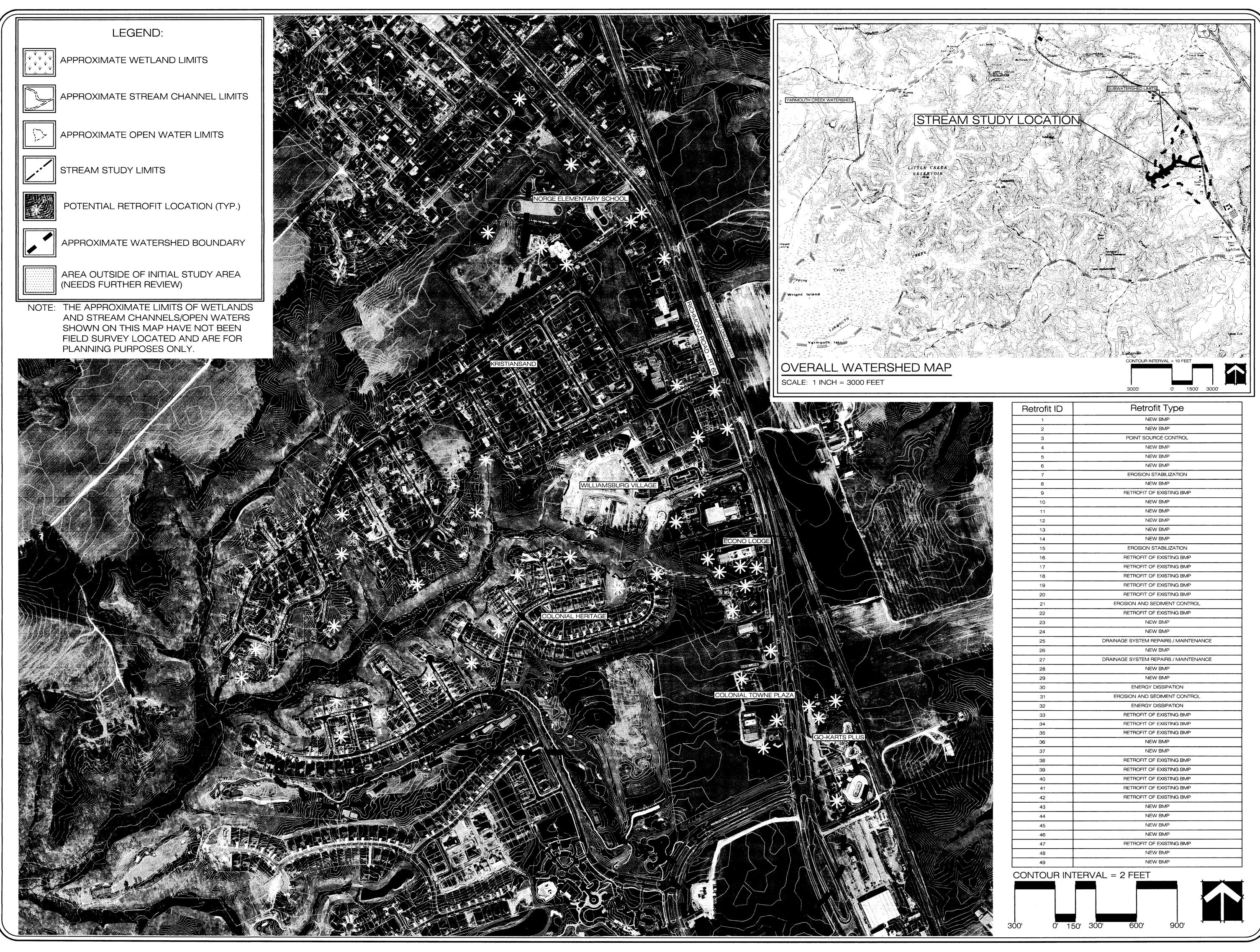


Kerr Environmental Services Corp.	REVISIONS	DRAWN PJS	DESIGNED PJS	
Sustainable Ecological Restoration and Environmental Consulting 1008 Old Virginia Beach Road Suite 200 Virginia Beach, VA 23451		FILE	CHECKED MB	



LATITUDE: 37° 21'25.86"N LONGITUDE: 76°46'19.53"W


1 1 1 1


STREAM ACTIVITIES	S SUMMARY
TIVITY	LINEAR FEET (LF)
REAM ENHANCEMENT	1,186 LF
REAM RESTORATION	194 LF
TAL	1,380 LF


	STREAM /	ASSESS
REACH ID	LINEAR FEET	USN RCI SCOF
REACH 1	685 LF	0.98
REACH 2*	100 LF	
REACH 3	1,511 LF	1.12
REACH 4	342 LF	1.12
REACH 5	629 LF	1.14
REACH 6	3,534 LF	1.38
REACH 7	663 LF	1.25
REACH 8	1,276 LF	1.23

	REACH ID	ENTRENCHMENT RATIO	W/ RA
-	REACH 1	1.2	10
	REACH 3	3.3	7.3
	REACH 4	2.5	13
	REACH 5, 7, & 8	2.6	5.
	REACH 6	17.3	14

1	NEW BMP
2	NEW BMP
3	POINT SOURCE CONTROL
4	NEW BMP
5	NEW BMP
6	NEW BMP
7	EROSION STABILIZATION
8	NEW BMP
9	RETROFIT OF EXISTING BMP
10	NEW BMP
11	NEW BMP
12	NEW BMP
13	NEW BMP
14	NEW BMP
15	EROSION STABILIZATION
16	RETROFIT OF EXISTING BMP
17	RETROFIT OF EXISTING BMP
18	RETROFIT OF EXISTING BMP
19	RETROFIT OF EXISTING BMP
20	RETROFIT OF EXISTING BMP
21	EROSION AND SEDIMENT CONTROL
22	RETROFIT OF EXISTING BMP
23	NEW BMP
24	NEW BMP
25	DRAINAGE SYSTEM REPAIRS / MAINTENANCE
26	NEW BMP
27	DRAINAGE SYSTEM REPAIRS / MAINTENANCE
28	NEW BMP
29	NEW BMP
30	ENERGY DISSIPATION
31	EROSION AND SEDIMENT CONTROL
32	ENERGY DISSIPATION
33	
34	RETROFIT OF EXISTING BMP RETROFIT OF EXISTING BMP
35	NEW BMP
37	NEW BMP
38	RETROFIT OF EXISTING BMP
39	RETROFIT OF EXISTING BMP
40	RETROFIT OF EXISTING BMP
40	RETROFIT OF EXISTING BMP
42	RETROFIT OF EXISTING BMP
43	NEW BMP
44	NEW BMP
44	NEW BMP
45	NEW BMP
40	RETROFIT OF EXISTING BMP
47	NEW BMP
48	NEW BMP
I	
<u>DINTOUR INTE</u>	RVAL = 2 FEET

5. Warranties

6. Project Development Documentation

County Record Checklist

*Directions: Please check the type of file for scanning and check the documents enclosed in the file. Remove any budget documents, contractor financial statements or any documents with account numbers.

□ Stormwater Projects, General Site/Subdivision (from ERP) and Stream Restoration Files

File Name: <u>99189</u> Order of Contents: Certification of Authenticity (placed in the file at the time of certification) a. Memorandum of files approved for scanning b. This checklist c. 1. Maintenance Agreement Deeds/Easements/Agreements/Property Records 2. 3. Record Drawings (As Builts) **Construction Drawings** 4. 5. Warranties \mathbf{V} 6. Project development documentation X 7. Reports 8. Specifications and engineering calculations 厨 9. Permitting (ex. wetlands permit, SWPPP) 10. Inspections 11. Correspondence 12. Misc. (ex. photos)

□ Stormwater Stormwater Mangement Facilities (BMP) Files

Order	of Coi	ntents: File Name:	
	a.	Certification of Authenticity (placed in the file at the time of certification)	
	b.	Memorandum of files approved for scanning	
	с.	This checklist	
	1.	Maintenance Agreement	
	2.	Deeds/Easements/Agreements/Property Records	
	3.	Construction Certificate	
	4.	Record Drawing (as-built plan)	
	5.	Construction Drawings	
	6.	Design Calculations	
	7.	Reports	
	8.	Correspondence	
	9.	Inspection Records	
	10.	Misc. (ex. photos)	

VILLIAMSBURG ENVIRONMENTAL GROUP, INC.

September 5, 2008

James City County Stormwater Division Attn: Mr. Wayland Bass 287 McLaws Circle, Suite 1 Wiliamsburg, VA 23185

Re:

Environment fonsultants Site Assessment and Conceptual Plan Kristiansand Tributary Project, James City County, Virginia WEG Project #3935

Mr. Bass:

This correspondence presents the results of a site assessment and drainage evaluation study performed by Williamsburg Environmental Group, Inc. (WEG) for the County of James City, Virginia within the Kristiansand Tributary project limits (Figure 1). The approximate 46-acre project area is comprised of the draw surrounding an unnamed Yarmouth Creek tributary extending from Richmond Road to the confluence near the Drammer Court cul-de-sac. The study limits are situated west of Richmond Road, south of Nina Lane in the Kristiansand subdivision, and north of Arthur Hills Drive in the Colonial Heritage development (Figure 2). The site can be accessed by several roads in the Kristiansand subdivision. The purpose of the investigation was to assess existing site conditions in order to identify potential preventative and/or restorative stream measures, including BMPs, which may provide further stabilization and increased water quality functions to the water resources onsite. WEG performed a general site reconnaissance in May and June 2008 to document site conditions relative to water resources.

BACKGROUND

The onsite stream resources are a part of the Yarmouth Creek Watershed, which flows into the Chickahominy River within the James River drainage basin. According to James City County's Yarmouth Creek Watershed Plan (2003), the Yarmouth Creek drainage area has a high risk of becoming impacted due to increased land development within the headwaters of its tributaries. The aforementioned project area is included within Subwatershed 104 of the Watershed Plan, and it was estimated that impervious cover made up 9.0% (77.4 acres) of the 860 acres of Subwatershed 104 at the time of the Watershed Plan, and future land use impervious cover is estimated at 19.7% (169.42 acres). A quick reference to the Yarmouth Creek Watershed Plan has been provided within Appendix F at the end of this report.

OFFSITE ANALYSIS

Prior to conducting fieldwork, WEG consulted the USGS Topographical Quadrangle (Quad) map for Norge, Virginia, (1984), the National Wetlands Inventory (NWI) Online Interactive Mapper, administered by the U.S. Fish and Wildlife Service, and the Natural Resources Conservation Service (NRCS) Web Soil Survey. The USGS map shows a completely forested project area with an intermittent stream of approximately 4,000 linear feet (LF) surrounded by steep slopes. The

NWI map depicts freshwater forested wetlands surrounding the stream. Finally, the soil survey indicates the site is underlain primarily by Johnston complex and Emporia complex. Johnston complex is classified by the USDA as a hydric soil.

WETLAND WALKOVER

The onsite investigation was conducted on May 13, 2008, using the Routine Determination Method, as outlined in the 1987 *Corps of Engineers Wetland Delineation Manual*, as a basis for identifying areas subject to potential jurisdiction by the Corps and/or the DEQ. This method involves the positive identification of three parameters in the determination of wetland boundaries: hydrophytic vegetation, hydric soils, and wetland hydrology.

The results of the wetland walkover are provided on the Stream Condition Summary Map (Map Pocket). Based upon the fieldwork completed, wetlands exist in conjunction with the floodplain of the unnamed Yarmouth Creek tributary. Typically the limits of the wetlands extend from the toe-of-slope on both sides of the stream. Other Waters of the United States include nine (9) first order streams flowing into the drainage. The majority of the vegetative communities present can best be classified as forested. However, there is a sewer easement trends along the southern side of the draw. The sewer easement can best be described as an emergent wetland since the trees were all cleared. Common vegetation in the forested areas included black gum (Nyssa sylvatica), sycamore (Platanus occidentalis), ironwood (Carpinus caroliniana), spicebush (Lindera benzoin), lizard's tail (Saururus cernuus), common rush (Juncus effusus), golden ragwort (Senecio aureus), and skunk cabbage (Symplocarpus foetidus). The emergent wetlands in conjunction with the sewer easement typically contain common rush (Juncus effusus), hop sedge (Carex lupulina), Nepalese brown top (Microstegium vimineum) and restricted to the western portion were black willow saplings (Salix nigra). Soils onsite are typically very dark gray to black (2.5Y 3/1 to 2.5Y 2.5/1 in Munsell color notation) in color, with faint redox features, and can be characterized as hydric. Wetland hydrology onsite is typically met by saturation within the first 12 inches of the soil and occasional inundation.

STREAM ASSESSMENT

WEG conducted a baseline assessment of all onsite stream resources in May 2008, which included identification of existing stream and riparian buffer conditions. The Environmental Protection Agency Rapid Bioassessment Protocol (EPA RBP) and the Virginia Department of Environmental Quality (DEQ) and the Army Corps of Engineers (Corps) Unified Stream Methodology (USM) were applied to all onsite stream resources. In addition, stream geomorphic measurements were collected at representative locations to help quantify channel stability conditions. Representative Photographs were also taken and are provided in Appendix A.

RBP Assessment

The EPA RBP for Streams and Wadeable Rivers is an evaluation of 10 physical habitat characteristics that influence the quality of the water resource and the condition of the resident aquatic community (Barbour et al. 1999). Parameters relating to instream habitat, channel morphology, bank structural features, and riparian vegetation are observed as a function of overall water quality. In order to account for natural differences in coastal plain verses mountain region habitats, low- and high-gradient assessment methods were developed. The low-gradient assessment for coastal plain systems was utilized for the project area.

The onsite stream resources received RBP scores between 43 and 174, which are shown on the Stream Condition Summary Map (Map Pocket), and reflect a range of stream quality onsite. Generally, reaches located in mature forest and wetland areas scored in the Optimal category (166-200), while streams located in the eastern end of the property, in closer proximity to current land development, received scores within the Poor category (0-47) to Suboptimal category (113-153). The category for scores that fall between the thresholds is determined by more detailed assessment of existing conditions and best professional judgment. Poor to Suboptimal reaches generally experienced deficiencies within the categories of pool variability, vegetative bank protection, and riparian buffer conditions, with fewer deficiencies in other categories.

USM Assessment

The Unified Stream Methodology is used to score streams and assign a relative functional "value," called a Reach Condition Index (RCI), based on four stream quality metrics: channel condition, riparian buffer, instream habitat, and channel alteration. The overall RCI score, along with best professional judgment, is used to determine the potential for improvement within a given stream channel.

The USM Reach Condition Index (RCI) scores are listed on the Stream Condition Summary Map, and reflect similar stream quality scores to the RBP Assessment. Please refer to Appendix B for complete USM assessment forms.

Rosgen Stream Classification

Rosgen stream classification is based on parameters that affect the stability of channel morphology, including channel width, depth, slope, and particle roughness and distribution. The methodology utilizes the measured parameters to classify stable channels into A, B, C, D, and E stream types, while unstable channels generally fall into G and F stream types. Selected cross sections are analyzed in order to provide much of the data necessary for channel classification in a timely, cost effective manner.

Representative cross-sections were taken and analyzed to determine preliminary geomorphic conditions for the onsite stream resources. A Rosgen classification summary is provided on the Stream Condition Summary Map (Map Pocket). Reach 1 exhibits unstable bed and bank conditions, a low entrenchment ratio, low sinuosity, and a steep slope, all of which place this reach in the "G" channel category. Reach 2 receives runoff flow from a parking lot, and exhibits incision, however, was not classified due to its non-jurisdictional nature and obstruction of the channel by root mat. Reach 4 exhibits a moderate entrenchment ratio, high width/depth ratio, and moderate slope, and receives an estimated classification of a stable "C" channel. Reach 4 shows signs of previous enhancement activity in the form of rock cross vanes and coir log bank stabilization, as shown in Photograph 3, Appendix A. Reach 3, 5, 7, and 8 flow into the main tributary of Yarmouth Creek, and demonstrate characteristics of a stable "E" channel, with the exception of average stream slope. Some areas at the headwaters of these systems show signs exhibit headcuts, which are discussed in the Stream Improvement section. Reach 6 was classified as a stable "E" channel in the field due to a high entrenchment ratio and sinuosity, and gentle slope, though the width/depth ratio is out of range for the "E" channel classification.

Channel Evolution Model

The CEM was applied to all onsite reaches during the field reconnaissance in May 2008. The Channel Evolution Model (CEM) was developed in 1984 by Schumm, Harvey and Watson, to provide a tool for classifying a subject stream on a "stability" scale. The CEM has 5 categories (I-V) with I and V indicating a stable stream channel. Stage II indicates a channel is degrading and is actively lowering its base elevation, as exhibited in Reach 1 and 2 onsite. Stage III is associated with a channel as it widens to create capacity. Stage IV indicates that a channel is sloughing and beginning to stabilize at a new floodplain elevation (Reach 3, 4, 5, 7, and 8). Stage V indicates that a channel has stabilized at a new floodplain elevation, as observed in Reach 6.

Stream Improvement Recommendations

In general, the field assessment reflects various states of stream stability. Reaches 4 and 6 are stable, and require no stream improvement measures at this time. The remaining reaches exhibit various forms of instability, including bank erosion, incision, and headcutting, which ultimately degrade water quality and aquatic habitat within the Yarmouth Creek Watershed. Unstable reaches are stream enhancement or restoration candidates. Please refer to the Stream Condition Summary Map (Map Pocket) for the general location of proposed stream improvement activities.

<u>Stream Enhancement</u> – Degraded streams that may contain one or two forms of instability (i.e. incision, over widening, bank failure, etc.), but do not require restoration of dimension, pattern, and profile, are designated as stream enhancement. WEG staff identified Reach 1 and portions of Reaches 3, 7, and 8 as stream enhancement opportunities, for a total of 1,186 linear feet (LF). Stream enhancement may include the following activities:

- Instream structures (i.e. cross vanes, j-hooks, log deflectors);
- Bank grading measures (i.e. bankfull bench enhancement or grading);
- Streambank plantings (i.e. livestakes, stabilizing seed planting mix);
- Preservation and/or planting of the riparian buffer directly adjacent to the stream channel.

<u>Stream Restoration</u> – These activities can be applied to severely degraded stream systems that require restoration of the dimension, pattern, and profile in order to address current physical, chemical, and/or biological deficiencies. These stream systems are restored to a dynamic, yet stable, functioning stream system. WEG staff identified three potential stream restoration opportunities exist within Reach 2, 5, and 7, for a total of 194 LF. Stream restoration activities may include the following activities:

- Local stabilization of incision within Reach 2;
- Outfall protection or other measures for the runoff area of Reach 2, as discussed in the Watershed Evaluation – Site 23 (Appendix C);
- Local stabilization and outfall protection at upstream limit of Reach 5, as discussed in the Watershed Evaluation – Site 32 (Appendix C);
- Headcut stabilization within Reach 7, as discussed in the Watershed Evaluation Site 28 (Appendix C);
- All measures discussed within the Stream Enhancement Section above.

DRAINAGE EVALUATION

WEG staff has evaluated the existing watershed conditions throughout the contributing area to the Kristiansand Tributary and identified numerous stormwater management retrofit opportunities, which are shown on the Watershed Evaluation Summary Map (Map Pocket). These retrofits address various stormwater concerns and collectively should improve downstream water quality and stream function. The retrofits have been grouped into 6 categories based on their respective general characteristics and intended function, as discussed below.

- <u>Retrofit of existing Best Management Practice (BMP)</u> Modification of existing BMPs to repair deficiencies and/or provide enhanced water quality treatment benefits.
- <u>Construction of new BMP</u> Installation of new stormwater management practices to treat areas currently uncontrolled. May consist of a variety of different practices to be selected in accordance with site specific constraints and treatment objectives.
- 3. <u>Energy dissipation</u> Construction of energy dissipation measures at existing stormwater outfalls in order to resolve existing scour problems or prevent future potential concerns.
- 4. <u>Repair of existing drainage system</u> Repairs or upgrades to existing stormwater conveyance systems to address existing damages or apparent capacity issues.
- Erosion and sediment control Improvements or repairs to existing temporary erosion and sediment control practices within active construction areas, or implementation of sediment control or stabilization measures for areas currently untreated or exhibiting problems.
- 6. <u>Point source pollution control</u> Installation of treatment practices such as spill prevention or containment measures within areas identified as potential point source problems or known "hot spots." Appropriate practices should address site-specific concerns.

Although some of the retrofits are clearly defined by a specific category, many incorporate features from multiple categories. The identified retrofits are shown on the Watershed Evaluation Summary Map (Map Pocket), and a discussion of the existing conditions and potential improvements associated with each are provided in Appendix C. Although efforts were taken to identify as many potential retrofit opportunities as possible, similar retrofit activities may still be feasible elsewhere in the watershed. Before implementation of the retrofits included herein, it is recommended that further review and/or detailed design calculations be completed since the scope of this study was general in nature and the retrofits were described qualitatively.

EASEMENT/OWNERSHIP INFORMATION

WEG reviewed County plat and plan information related to landowner and drainage easements adjacent to the project limits. A summary of adjacent landowner information is provided in Appendix D, and can be referenced to the Stream Condition Summary Map (Map Pocket) via the Parcel ID Number (PIN) for each property. Sewer and utility easement information is pending, and will be included upon receipt from James City County.

AGENCY DATABASE REVIEW

Natural Heritage Resources

Natural heritage resources are defined as the habitat of rare, threatened, or endangered plant and animal species, unique or exemplary natural communities, and significant geologic formations. According to formal database results from the Virginia Department of Conservation and Recreation (DCR) dated June 2, 2008, natural heritage resources have been documented within the vicinity of the project area. Specifically, DCR notes the potential for the occurrence of federal species of concern Virginia least trillium (*Trillium pusillum* var. *virginianum*) within the project limits and recommends an inventory of the project site in order to more accurately assess potential impacts to this species. In addition, the U.S. Fish and Wildlife (FWS) list of endangered and threatened species for James City County was reviewed for known occurrences of listed species within the locality. According to the FWS lists, the federally and state threatened small whorled pogonia (*Isotria medeoloides*) and federal species of concern Virginia least trillium have been documented within James City County. FWS currently requires surveys for the small whorled pogonia within localities with known occurrences of these species. In addition, the Virginia Department of Environmental Quality (DEQ) often requests surveys for the state rare Virginia least trillium during the permitting process.

WEG conducted a preliminary evaluation to determine if potential habitat is present for Virginia least trillium and small whorled pogonia. Additional discussion of these surveys is provided in the Threatened and Endangered Species Evaluation Section; however, overall existing conditions reflect poor and/or minimal habitat available for either species.

A search of the Virginia Department of Game and Inland Fisheries (DGIF) Fish and Wildlife Information Service (VAFWIS) database was conducted to identify occurrences of natural heritage resources within a 2-mile radius of the project site. The presence of three threatened or endangered species have been identified within the vicinity of the project site, including the state threatened peregrine falcon (*Falco perigrinus*), state threatened loggerhead shrike (*Lanius ludovicianus*) and state threatened bald eagle (*Haliaeetus leucocephalus*). Due to the distance to the documented resources and the scope of the proposed activity, we do not anticipate that the project will have any adverse effect on these natural heritage resources; however, additional species surveys may be required during the permitting process.

Cultural Resources

WEG requested a Virginia Department of Historic Resources (VDHR) letter report and database search of the Data Sharing System (DSS) for evidence of known cultural resources within the proposed project area. According to the Detailed Archives Search, dated June 30, 2008, no architectural or archeological features were documented within the proposed project area (Appendix D).

THREATENED & ENDANGERED SPECIES EVALUATION

WEG conducted a preliminary review of the project area to determine if potential habitat is present for two rare species known to occur in James City County; Virginia least trillium (*Trillium pusillum. var. virginianum*) and small whorled pogonia (*Isotria medeoloides*).

<u>Small whorled pogonia (SWP)</u> – This species is a self-pollinating perennial orchid (Family: Orchidaceae), four to twelve inches in height, with a characteristic whorl of five to seven leaves at the summit of a singular, hollow, pale green stem with one or two pale yellowish-green irregular flowers (Mehrhoff 1983, Gleason and Cronquist 1991, Vitt and Campbell 1997). SWP occupies a very specific habitat type within its range. In particular, the species seems to require the following conditions: mature, mixed hardwood, upland forests; generally open understory conditions with minimal aggressive ground level species; generally level to moderately sloping land within shallow upland draws often of northerly or easterly exposure; scattered ground-level sunlight; and, acidic, sandy loam soils (Ware 1991, Gleason and Cronquist 1991, Weakley 2006). In addition, many professionals have noted a prevalence of decaying logs and a well-developed detritus layer on the forest floor.

Based on the review of the study area, uplands within the Kristiansand project site can be characterized as poor habitat for SWP. Mature mixed-hardwood communities with open understory were limited to very small isolated areas and lack the community structure and herbaceous associates typically found in suitable SWP habitat. In addition, steep slopes and dense understory vegetation throughout the study area combined with the close proximity to existing utility easements and adjacent homes further preclude the likelihood of SWP colonization.

<u>Virginia least trillium (VLT)</u> – This species is a small herbaceous perennial of the lily family (Liliaceae) with three lance-elliptic to lance-ovate leaves and white to pinkish petals that turn rose-purple with aging (Gleason and Cronquist 1991, Radford et al. 1968). Seedlings of the Virginia least trillium consist of a single leaf with a roundish to elliptical blade (Ware 1996). Flowering typically occurs from March to May (Grimm 1993), but the plant is otherwise unassuming and somewhat cryptic in the herbaceous layer. VLT is found in the Coastal Plain of Virginia and Maryland (Gleason and Cronquist 1991), and occurs in swamps and bottomland forests or locally on small mesic beech islands (Weakley 2002) and acidic groundwater discharge seeps. Although it is generally restricted to wetland habitats or their borders, the micro-sites on which the least trillium occurs may not be permanently saturated (Ware 1996).

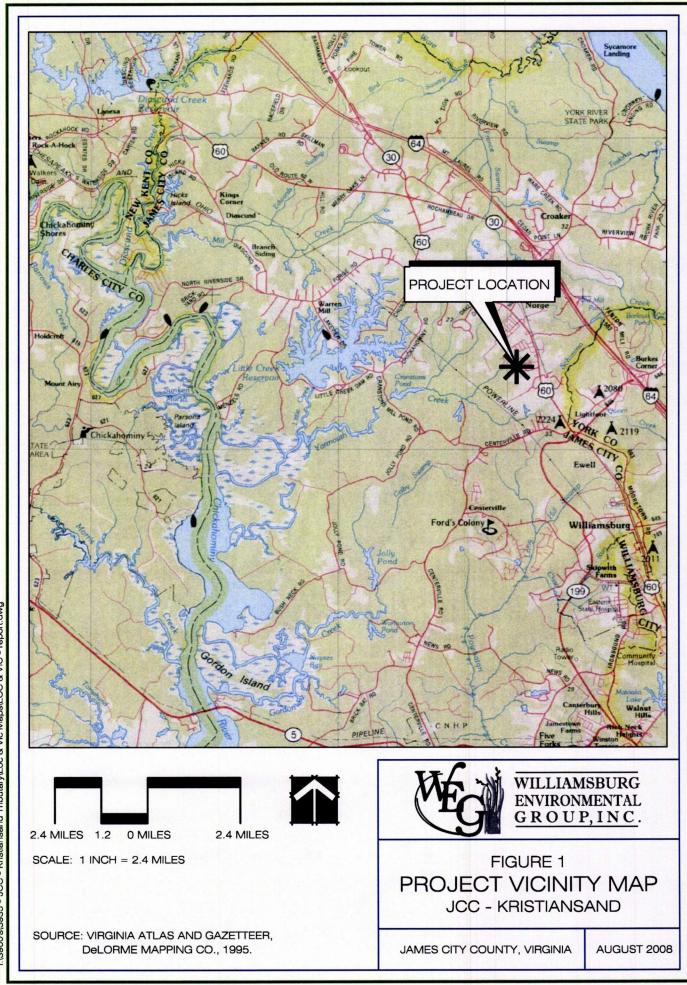
Potential habitat for VLT was identified in limited areas, specifically along the margins of the wetlands limits and in occasional side slope seeps within the study area. This species does not carry a legal state or federal status and thus, would not be subject to the requirements of Section 7 of the Endangered Species Act. However, the agencies may request an additional species survey during the permitting process.

PRELIMINARY COST OPINION

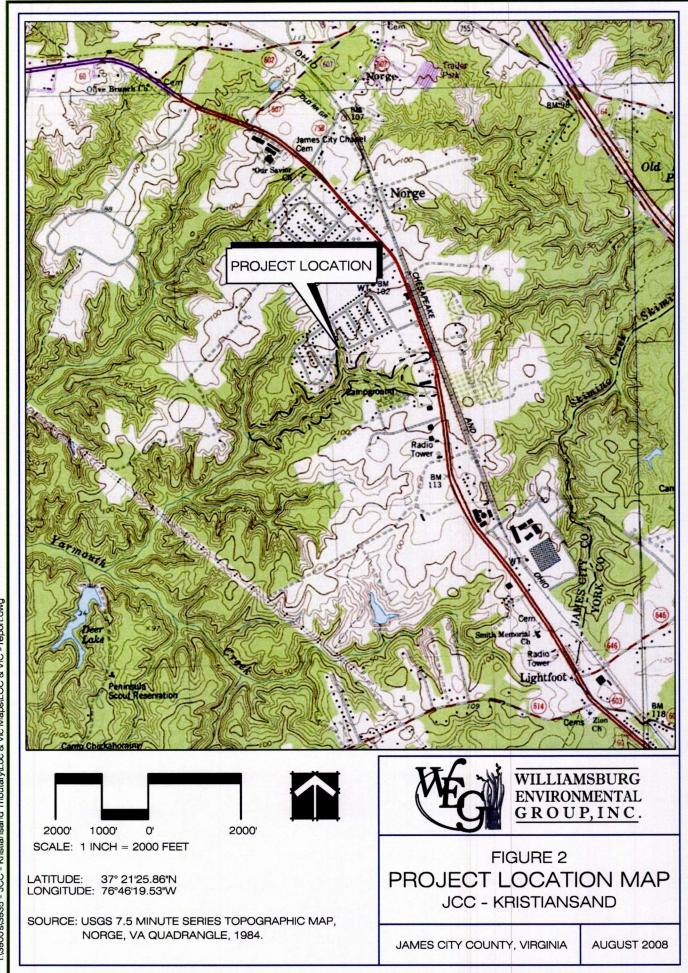
A preliminary cost opinion for the potential stream improvement work is provided in Appendix E. The cost opinion includes measures depicted on the Stream Condition Summary Map (Map Pocket). If the County chooses to implement a subset of activities based on the proposed BMP measures discussed in the Watershed Evaluation section of this report, WEG will revise the cost opinion include the chosen BMP measures.

RECOMMENDATIONS

Based upon the information provided in this report, WEG would like to coordinate a meeting with James City County to discuss the recommendations and finalize the cost opinion for the Kristiansand Tributary Project. Please call to set up a meeting date or to discuss any questions regarding our investigation.


Sincerely

Travis Cryyosky Program Manager, Streams


Taniel Booto>

Daniel Proctor, P.E. Water Resources Engineer II

Enclosures smw

33000s\3935 - JCC - Kristiansand TributaryLoc & Vic Maps\LOC & VIC - report.dwg

\3900's\3935 - JCC - Kristiansand TributaryLoc & Vic Maps\LOC & VIC - report.dwg

Photograph 1: Reach 1 – Looking upstream (potential stream enhancement).

Photograph 2: Reach 2 – Incision below effective rooting depth (potential stream restoration).

Photograph 3: Reach 3 – Looking downstream (potential stream enhancement).

Photograph 4: Reach 4 – Within currently enhanced area.

Photograph 5: Reach 5 – Looking upstream.

Photograph 6: Reach 6 – Looking downstream.

Photograph 7: Reach 7 – Looking upstream.

Photograph 8: Reach 7 – Headcut area (potential stream restoration).

Photograph 9: Reach 8 – Looking downstream.

Photograph 10: Reach 8 – Representative existing BMP.

STREAM NAME RI	LOCATION KVISTIKASKAD - JCC
STATION #RIVERMILE	STREAM CLASS
LATLONG	RIVER BASIN jarmouth Creek
STORET #	AGENCY
INVESTIGATORS Suich Woodford	- Brock Resai
FORM COMPLETED BY BLJR	DATE 5-2-03 REASON FOR SURVEY

	Habitat		Condition	Category	•
	Parameter	Optimai	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance. of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 10	20, 19, 91, 17, 16	215.214 (19) 12: 10	10, 9, 8, 7, 6,	5, 21, 1, 22, 11, 20
Parameters to be evaluated in sampling texts	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud; or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
n l	SCORE 2	26. 10. 18. 12. 14.	15, 14, 17, 19, 11	$10 = 2 \leq 3 \leq \ell \leq 6$	
o be evalua	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow,	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
E.	SCORE 8	20-19-18-17-16	abservation and	10 9 3 3 7 5	1.2.1.2.2.2.1.30
Paramel	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 - 19 - 18 - 17 - 40	5.0 0 0 0		
· ·	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	
	SCORE 7	Sole in the second second second	TET LESSED ADD SH	N MOTOR DE CONTRACTOR	

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

- Enhancement potential

A-9

0.2671

Ĥ	abitat		Condition	Category	
Par	ameter	Optimal	Suboptimal	Marginal	Poor
6. Chan Alterati		or therefore or	Some channelization present, usually in areas of bridge abuttnents; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring struetures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
SCORI	e 15	20.7.195 18 217 216		50 97 1 7 6	5. (5.10.2 (1.2.0
7. Chai Sinuos	nnel	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily raited in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
	E	Tated in these areas.)	1955-744-21-0 120-211-	10-7-51 8: 7-16	Start Sold at the
SCOR 8. Ban (score	k Stability each bank)	Banks stable; evidence of crosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable;	Moderately unstable; 30-	frequent along straight
SCOR	$E \frac{4}{(LB)}$	Len Bank 10-22 Reprint and 200			
9. Ye Prote cach l Note:	getative ction (score	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody	covered by native vegetation, but one clast of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plan	results of bare son of closely cropped yegetation common; les than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streamban vegetation is very high vegetation has been s removed to 5 centimeters or less in average stubble height
sco	RE 3 (LB)	nehalante 2000.0			
1	RE 3 (RB)	and the second			
10. Veg Wid	Riparian etative Zone th (score cac riparian zor	Width of riparian zone, >18 meters; human activities (i.e., parking lots, roadbeds, clear-cu	Width of riparian zone 12-18 meters; human activities have impacte zone only minimally. ot	12 meters; numan	<6 meters: nine or no
600	DRE 5 (LB	Contraction of the second s			
1000	DRE 9 (RE				

Total Score

Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

STREAM NAME	R3	LOCATION Kristiansand - Jcc
STATION #		STREAM CLASS
LAT	LONG	RIVERBASIN Kymouth Creek
STORET #		AGENCY
INVESTIGATORS	Squah Wood	
FORM COMPLETED		DATE <u>5-2-08</u> TIME AM PM

. [Habitat	<u></u>	Condition	Category	
. '	Parameter	Optimal	Suboptimal	Marginal	Poor:
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking,
cach	SCORE S	20 19. 18 17 16	No. N. III. De M	10 9. 8 5 7 6	5.4 9 2 4 0
Parameters to be evaluated in sampling reach	2, Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root - mats and submerged vegetation present.	All mud or clay or sand bottom; little or no noot mat; no submerged yegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
ted j	SCORE 14	20 - 19 - 18 - 12 - 14 6	IS IT IN ID IN	101-02-8-24-56	5124
o be evalua	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
ers t	SCORE 7	20 19 18 13 16		07,2970,3,577,976.	
Рагаше	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 13	203 195 185 17 216	Second Dect	10 9 - 7 6	SCOULS DECEMBER
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <2.5% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 13	2012/01/18/2012/201	of the new m	102200.50	

preservation

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

	Habitat	· · · · · · · · · · · · · · · · · · ·	Condition	Category	a an
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 8	50×10×118 1-17×16	present.	110 9 8 7 6	
	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
9		considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	العمر المراجع المراجع المراجع المراجع		
	SCORE 16	20. 12. 18. 174 16	55-14-18-20-10		
Droader unan s	8. Bank Stabillty (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of crosion; high erosion potential during floods.	Unstable; many croded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has crosional scars.
evaluated	SCORE 7(LB)	TeffBank 10 9. Rightamise 40			
Parameters to be evaluated broader than sampung account	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allower to grow naturally.	vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plan	closely cropped vegetation common; let than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambar vegetation is very high vegetation has been removed to S centimeters or less in average stubble height
	SCORE & (LB)	freniffinie (101-2) Afrantitanie (101-2)			
	10. Riparian Vegetative Zone Width (score each bank riparian zon	how an anal how m	12-18 meters; numan activities have impacte zone only minimally.	1 Z HOUSE A HULLMAN	<0 meters: intre or no
	SCORE 7 (LE) SCORE 9 (RE	PeriBants			

Total Score 1412

Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

	and a second
RY	LOCATION Kristiansand - JCC
RIVERMILE	STREAM CLASS
_ LONG	RIVERBASIN Yarmouth Creek
	AGENCY
· Sarah lo	redford - Brock Reegy
BY BWR	DATE <u>5.2-08</u> TIME AM PM REASONFOR SURVEY
	IS I RIVERMILE LONG · Saiah ling

	Habltat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
and the second	1. Epifaunal Substrate Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are noi new fall and noi bransient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
cach	score 15	20119-118-17, 16	IBCIA IB DEIL	10,2-9, 8, 9, 6	5-21.31.22-1.21
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All find or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
ted I	SCORE 16	20 - 19 - 18 - 17 - 16		101-02-20-22-26	
o be evalus	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow,	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
ers t	score 6	20 19 18 17 16	15449-03-24 10	0 9 9 9 9 9 9	
Paramet	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material; increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition:
	SCORE [3	205 194 184 17 116		D. 0	5.4 1 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 5	207 13 18 18 17 16	F IF I I	10-191-18-14/-10	

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

Preservation

Г	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	5. Channel		Some channelization present, usually in areas of bridge abuttnents; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	score 12	20. (10.) 18 - 17 - 96		and the second secon	5,00,52,2,01,0
Ø	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length I to 2 times longer than if it was in a straight line,	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
	SCORE 7	70, 19, 18, 17, 16	15 TH E 12 T	10 9 8 97 10	57 (3) 2
	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over, 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many croded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has crosional scars.
	SCORE $\frac{7}{1}$ (LB) SCORE $\frac{7}{7}$ (RB)	rieniBank 110 49 Richaumo 100 40			
	9. Yegetafiye Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody	vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plan	patches of bate son of closely cropped vegetation common; les than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streamban vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	$\frac{\text{SCORE} \underbrace{6}_{\text{(LB)}}}{\text{SCORE} \underbrace{6}_{\text{(RB)}}}$	RentBank 10-9			
	10. Riparian Yegetative Zone Width (score each bank riparian zone	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cu lawns, or crops) have n impacted zone.	S, I ZONE ONLY HUMINIANJ.	Width of riparian zone 12 meters; human activities have impacte zone a great deal.	<6 meters: little or no
	SCORE 8 (LB)	Contain 2 Contain			
	SCORE 8 (RB)	Statenna Banka and an			Sector Carlo Contraction Contraction

Total Score 126

Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

HABITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (FRO	NT)	ŀ.
---	-----	----

STREAM NAME RS	LOCATION KVISTIAnsand - UCC
STATION #RIVERMILE	STREAM CLASS
LATLONG	RIVERBASIN Yarmouth Creek
STORET#	AGENCY
INVESTIGATORS - Saral L	roalford - Brock Reggi
FORM COMPLETED BY B.WR	DATE <u>7-2-6</u> TIME AM PM

	Habitat	· · · ·	Condition	Category	
	Parameter	Optimal	Suboptimal	Margioal	Poor
	1, Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable of lacking.
cach	score 13	202 19 298 17 16	1578146-004-02-31P	c10-4-98776-	5-4-3-2-1-0
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mais and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root - mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or. bedrock; no root mat or vegetation.
fedl	SCORE 9	20 19 18 12 10	18,14, 10,10, D.	10 : 07 : 8 - 7 - 76	
o be evalus	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
ters t	score 6	20 19 18 12 16	BY REAL PROPERTY.	10 97, 3 7 6	5.21.51.22.24.00
Рагате	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or line sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 15	20.3192418 312 316	DO DE EL DE TR	107 10 - 2 - 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	
·	score 16	2010951865176116		10-00, 8 7, 6	100 - 100

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

Preservation

Т	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	5. Channel Alteration	of sharefing or	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	50,219 18 17 26	TO THE DE THE	50	5-1-3-2-1-0
	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line,	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been ehannelized for a long distance.
	· •	coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)			
duin	SCORE 4	20 1 10 18 10 16		102.22-81-22-50	
ם מנספתהו הואוז א	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over, 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many croded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has crosional scars.
evaluate	$\frac{1}{\text{SCORE } \int (LB)}{\text{SCORE } (RB)}$	1-n Bank - 10 - 9 Refußenkes - 10 - 9			
Parameters to be evaluated broader managements	9. Yegetative Protection (score each bank) Note: determine left or right side by facing downstream	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody	covered by harve vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plan	y vegetation common; les than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streamban vegetation is very high; vegetation has been s removed to 5 centimeters or less in average stubble height.
	$\frac{5}{\text{SCORE} - \frac{5}{6} \text{(LB)}}$				
	10. Riparian Vegetative Zone Width (score each bank riparian zone	Width of riparian zonc >18 meters; human activities (i.e., parking lots, roadbeds, clear-cu lawns, or crops) have n impacted zone.	activities have impacted zone only minimally.	12 meters, minan	<6 meters: intue of no
	SCORE (LB) SCORE 3 (RB)	the second s			

A-10 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

STREAM NAME RG	LOCATION Kristiansand - JCC
STATION #RIVERMILE_	
LATLONG	RIVERBASIN Parmouth Creek
STORET #	AGENCY
INVESTIGATORS	Shrah Woodford - Brock Reggi
FORM COMPLETED BY	C DATE 5-2-08 TIME AM PM REASON FOR SURVEY

. 1	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>pot</u> new fall and <u>not</u> transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
ench	SCORE 17	201 49 18 17/ 16	215 - 14 - 11 - 12 - 17	c10	55-01-31-22-0F-0F
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged yegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
ted	SCORE 16	20-10-10-12-116	K, M, B, B, D	10 9 2 8 9 6 6	50 AL 25 COLOR
o be evalua	3. Ponl Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
ers to	SCORE 18	20 19 18 17 16	SIGNAL PROPERTY AND	10 97 8 97 6	5 2 2 2 2 2 2 1 2 0
Paramet	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
ľ	SCORE (7	20 20 2 18 17 2 10	16, 10 B D T		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	
·	SCORE 18	2010/10 2018 107:201	5 167 147 248 242 DI		

Preservation

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

Γ	Habitat		Condition	Category	
	Parameter	Optimal.	Suboptimal	Marginal	Poor
	Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered of removed entirely.
	SCORE 18	20 210 13 17 16		10, 9, 2, 8, 7, 6	
	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily	The bends in the stream increase the stream length I to 2 times longer than if it was in a straight line;	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line:	Channel straight; waterway has been channelized for a long distance.
•	SCORE 14	rated in these areas.)	as in size of the	10 0 85 7 0	States and
	8, Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of crosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many croded arcas; "raw" arcas frequent along straight sections and bends; obvious bank sloughin 60-100% of bank has crosional scars.
	SCORE & (LB) SCORE & (RB)	Cen Bank 200 D			
	9. Yegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plan stubble height remaining.	patches of oare sold of closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation disruption of streamba vegetation has been removed to S centimeters or less i average stubble heigh
	$\frac{\text{SCORE} - 9}{\text{SCORE} - 9}$ (LB)	icenternie (1812–29) akrencernie (1813–29)			
	10. Riparian Vegetative Zone Width (score cach bank riparian zone	Width of riparian zonc >18 meters; human activities (i.e., parking lots, roadbeds, clear-cut lawns, or crops) have no impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally. of	Width of riparian zone (12 meters; human activities have impacted zone a great deal.	<6 meters: little or no
	SCORE $\frac{9}{(LB)}$ SCORE $\frac{9}{(RB)}$	tail lines of the literature			

Total Score 174

A-10 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

The second s

STREAM NAME R7 - Pres.	LOCATION Kristiansand - JCC
STATION #RIVERMILE	STREAM CLASS
LATLONG	RIVER BASIN Karmouth Creek
STORET #	AGENCY
INVESTIGATORS . Sacal Lea	16rd - Brock Rengi
FORM COMPLETED BY BWR	DATE 5-2-08 TIME AM PM

	Hablfat	· · · · · · · · · · · · · · · · · · ·	Condition	Category		•
	Parameter	Optimal	Suboptimal	Margina)	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale):	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
ach	SCORE 6	202019201853172116	315日4日131312日1	90-29-48-21-26	5 24 5 22 1 20	
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.	
ted	score 13	20 20 10 10 20 546	TE LE LOCUL M	10.5 9 at 8 2 2 36	51.405.22.21.20	
to be evalua	3. Pool Variabillty	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.	
ters	score 10	20-19-18-17-16	15 N 8 13 11	-10^{-5} $= 3^{-5}$	155-41-31-21-10-20	
Patame	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new hars; 50-80% of the bottom alfected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	80% of the bottom changing frequently; pools almost absent due to substantial sediment	
	SCORE 14	202 2192 18 17 21		0.9	55 4 2 2 4 4 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffic substrates are mostly exposed.		
	SCORE 6		The Plant and an	10-0-34-7-50		
ــــ	- Preser	ration	potentia	I for ra Reech	raches	w/ confl.
	at le	swer por	tion of	Keech	6	00
~	- head cu	rt stab	ilization	in ro	each on	KIS
	Reach	n G				

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

	Habitat	•	Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	Channel .	Changeligation Dr.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is nol present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
s	CORE 19	500019-118-17-16		N0: 29-58 7 6	51-17-32-12-0
7	7. Chaunel Sinvosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line, x .	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
	•	considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)			
	SCORE 3	201-10 -18 175-16	AS SUCHED BUILD		
	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over, 5-30% of bank in reach has areas of erosion.	Moderately unstable: 30- 60% of bank in reach has areas of crosion; high crosion potential during floods.	Unstable; many croded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing 60-100% of bank has erosional scars.
	SCORE $\frac{1}{2}$ (LB) SCORE $\frac{1}{2}$ (RB)	TENDANK - 10.9. Richtlink - 10.91			
	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody	covered by halve vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one- half of the potential plan	patches of hare solit of closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambar vegetation is very high vegetation has been removed to 5 centimeters or less in average stubble height
	SCORE 9 (LB)	ic humis a subset	280 C 200		
	SCORE 9 (RB)	Att huBank South 9			
	10. Riparian Vegetative Zone Width (score each bank riparian zone	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, elear-cut lawns, or crops) have no impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 12 meters; human activities have impacted zone a great deal.	<6 meters: little or no
	SCORE 4 (LB)				
	SCORE 4 (RB)	ManuBank. Car			

Total Score 144

0 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

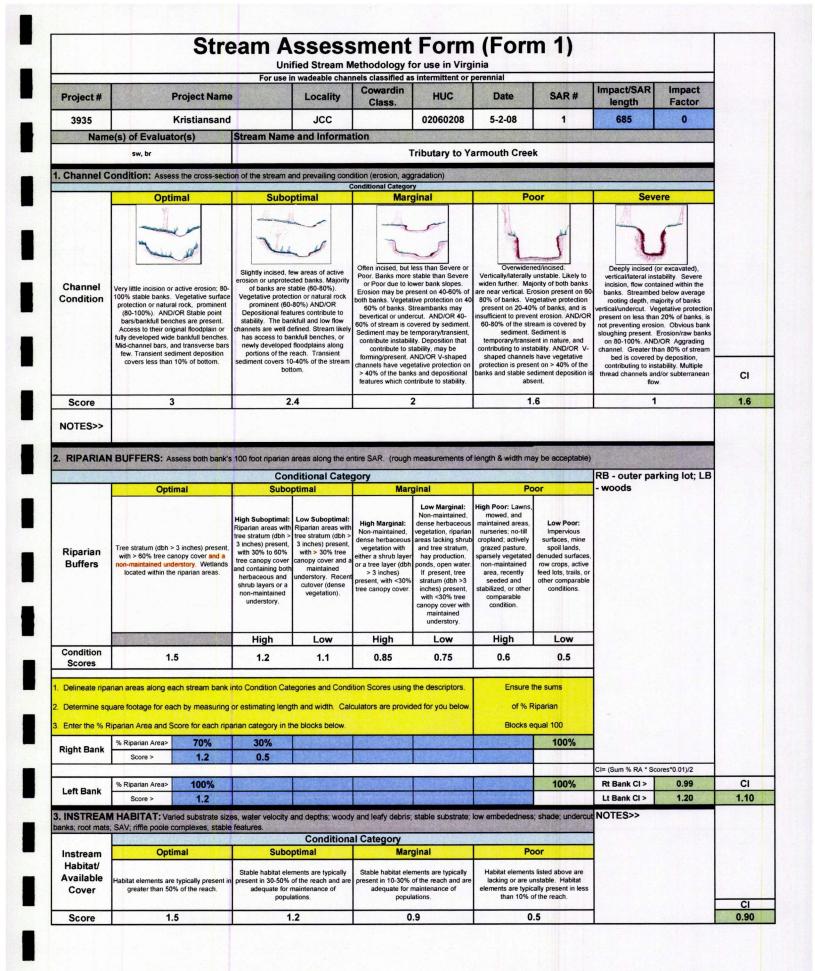
STREAM NAME R.S-Pres.	LOCATION Kristiansand - JCC
STATION #RIVERMILE	STREAM CLASS
LATLONG	RIVER BASIN Yarmouth Creek
STORET #	AGENCY
INVESTIGATORS Sarah WI	odford - Brock Regai
FORM COMPLETED BY BUR	$\begin{array}{c c} \text{DATE} & \underline{S-2-08} \\ \text{TIME} & \underline{\qquad} \text{ am } \text{ pm} \end{array} $ REASON FOR SURVEY

Habitat		Condition	Category	
Parameter	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of smags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/smags that are <u>not</u> new fall and <u>not</u> transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking,
SCORE 16	70. (1) (8 (1/ 16	15 M SE D TE	310- 9 - 8 - 7 - 6	5 2 1 3 2 1 50
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
SCORE 3	20 . T9 . (5 . H- 36	B & C D	0 0 1 1 0	30.00 2.1 0
3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
SCORE 10	20 10 18 16 16	ST LE BALLET	10 9 1 8 9 16	5 4 9 9 0 50
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
score 14	20 . 19 . 43 . 17 . 15		$10 - 0^{-2} - 0 = 6$	
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
SCORE 15			16:1 9 8 7 48	
preser	viation	potenti	al don	onstream
of re	viation itention	ponds	existing	developr

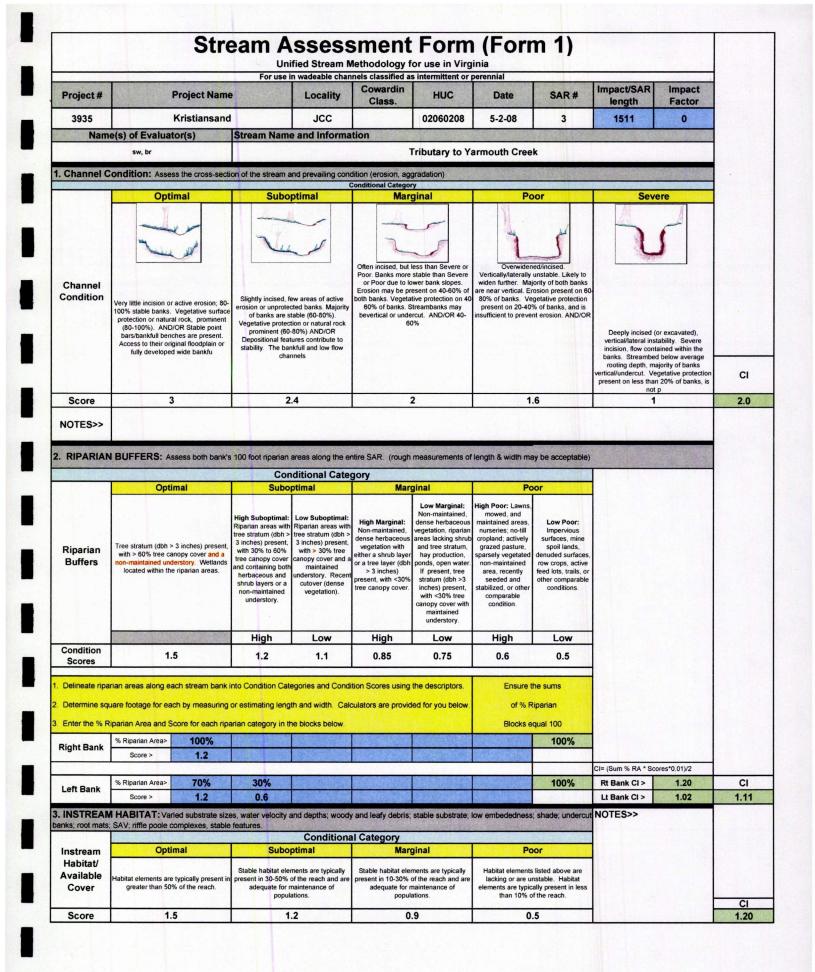
.

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

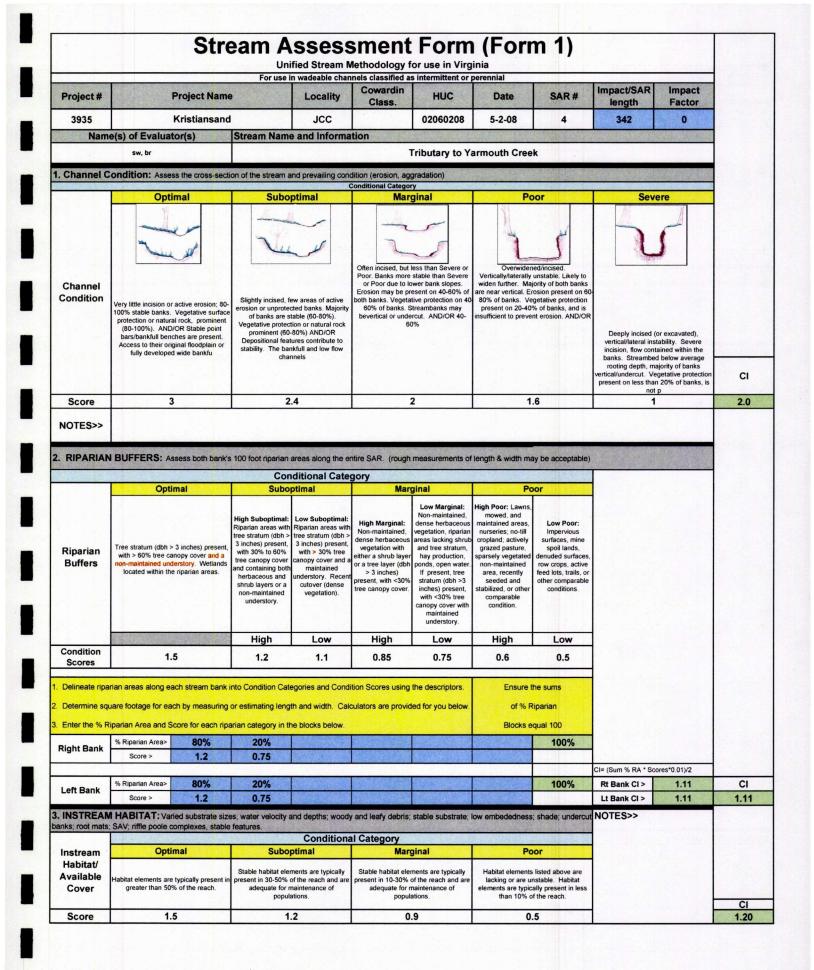
À-9

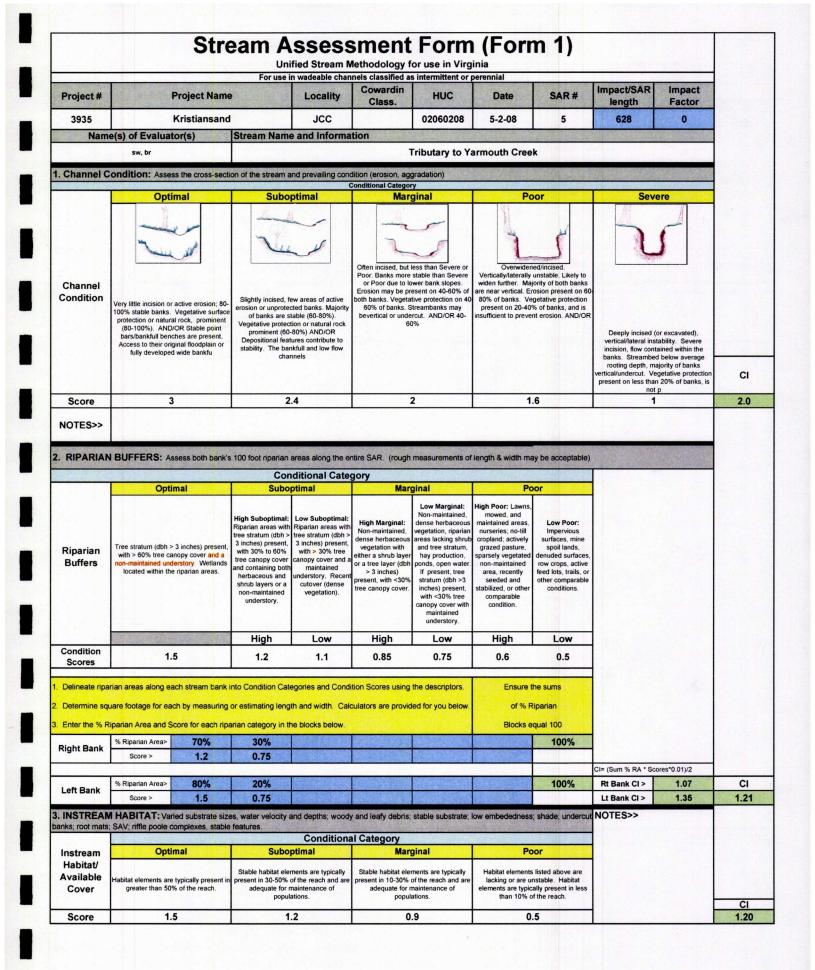

ACCEPTED NO.

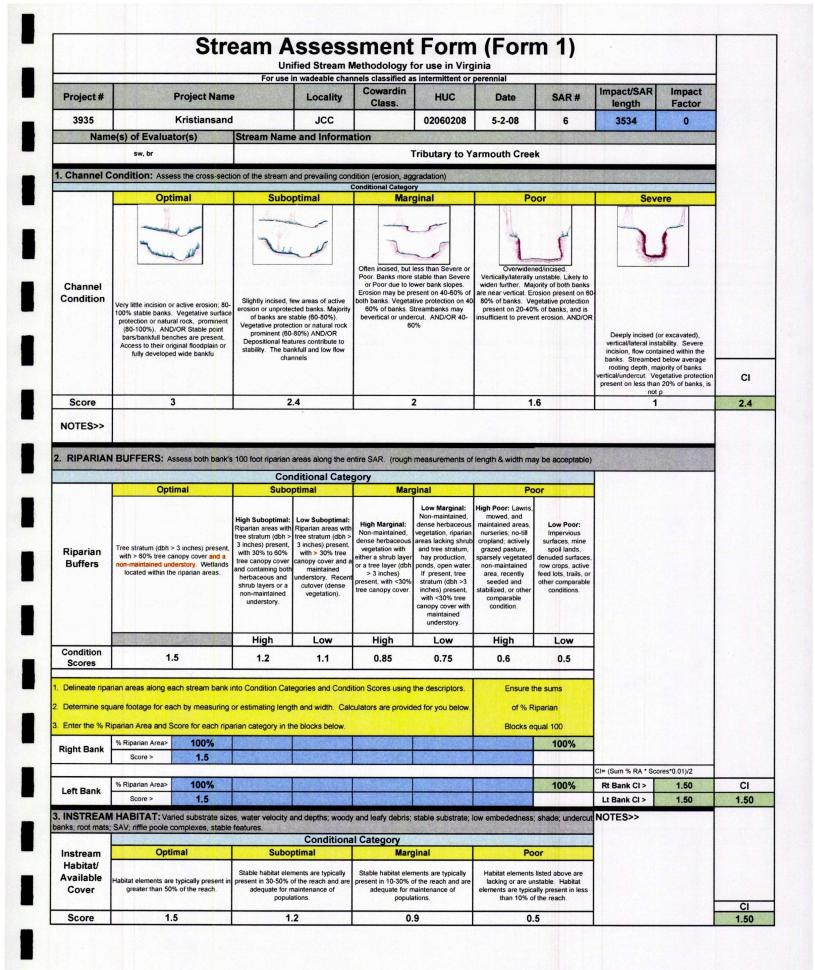
	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
A	Channel	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abuttments; evidence of past channelization, i.c., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
s	CORE 14	20, 19, 18, 17, 16	Dem. Deizaus	10 97 8 <i>70 6</i>	0.01.2.01
S	. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
	SCORE	202.19 18 172.16	1915 - 14 - Shi - 12 Salis	105-95-8	
Larameters to be evaluated bloads and and a second	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	
	SCORE (LB)	LeftBanks 2, 10, 9			
	SCORE 9 (RB)	Richterink 200-20	0.00		
a u s islatile je j	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	remaining.		Less than 50% of the streambank surfaces covered by vegetation disruption of streamba vegetation is very higl vegetation has been removed to 5 centimeters or less in average stubble height
	SCORE $\frac{9}{(LB)}$ SCORE $\frac{9}{(RB)}$	itentifinie (II) (). Mantifinik (III) ().			
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cut lawns, or crops) have no impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6 12 meters; human activities have impacted zone a great deal.	<6 meters: little or no
	$\frac{4}{1000}$ (LB) $\frac{4}{100}$ (RB)	Leniponte de 1922 RephiBant Statio			

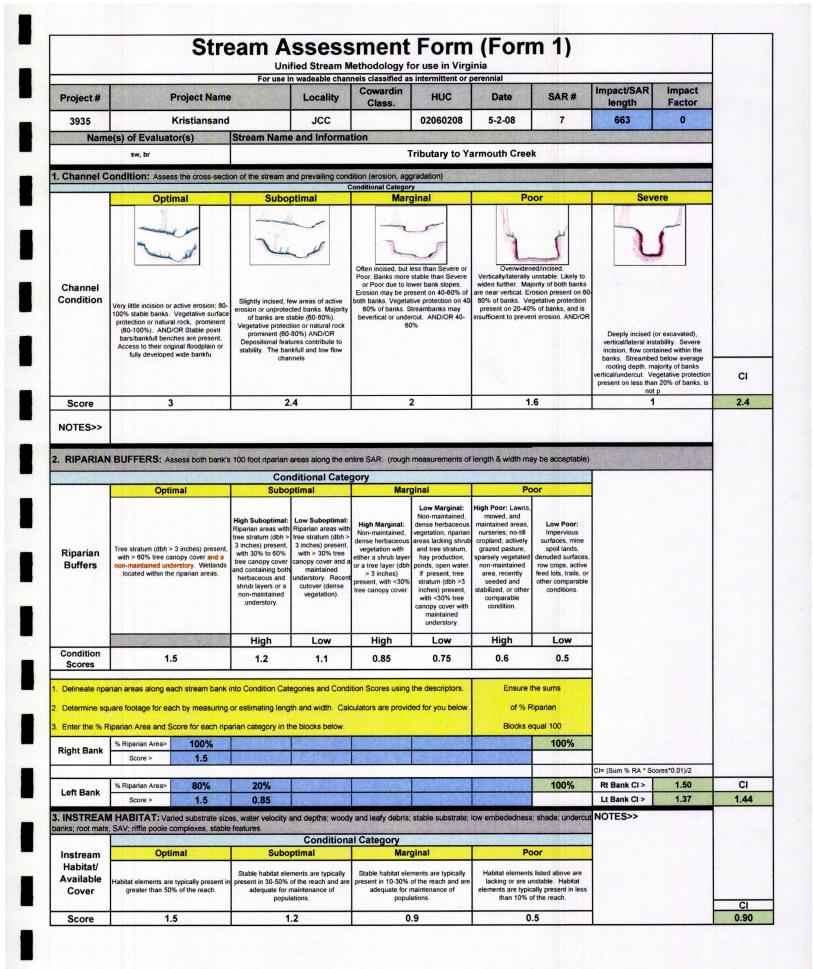

Total Score 3/

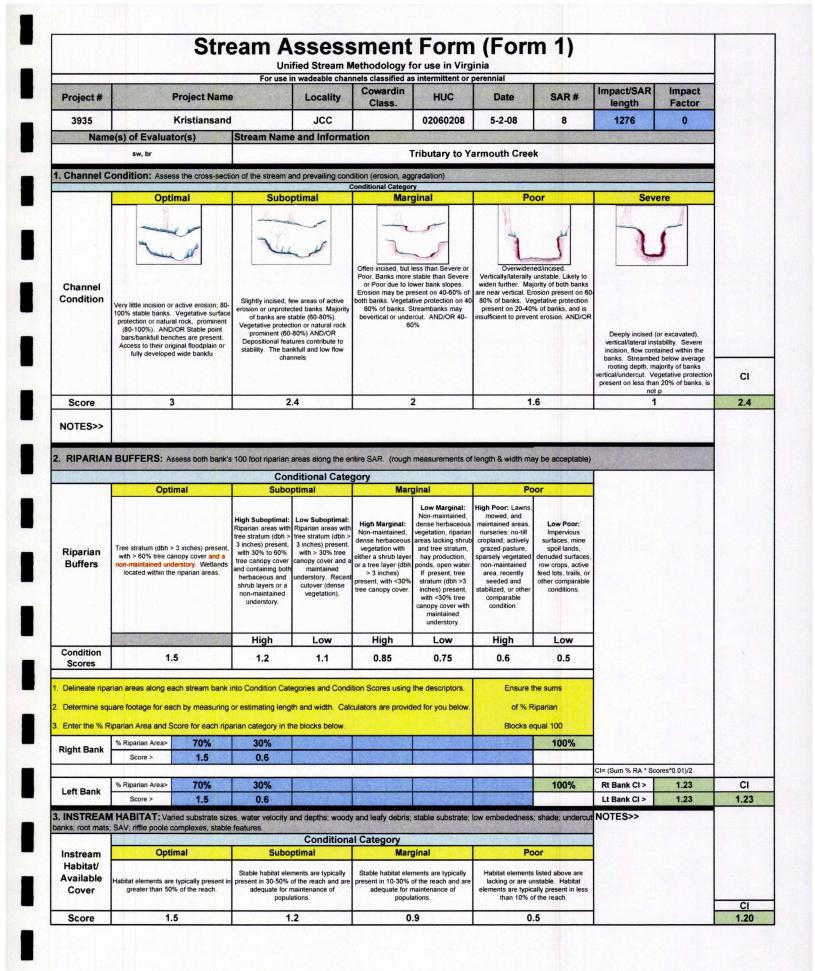
A-10


Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3


	S	tream Ir	npact A	ssessm	nent For	m Page	2			
oject #	Applicant		Locality	Cowardin Class.	HUC	Date	Data Point	SAR length	Impact Factor	
NNEL	ALTERATION: Stream crossir	ngs, riprap, concre	ete, gabions, or co	ncrete blocks, stra	ightening of chanr	nel, channelization	, embankments,	NOTES>>		
es, const	rictions, livestock		Condition	al Category						
	Negligible	Mi	nor		erate 60 - 80% of reach is disrupted by any	Ser	vere			
nannel eration	hardening absent. Stream has an unaltered pattern or has naturalized.	the channel alterations listed in the parameter guidelines.	disrupted by any of the channel alterations listed in the parameter guidelines.	of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	by any of the chan in the parameter g 80% of banks st riprap, o	of reach is disrupted nel alterations listed juidelines AND/OR lored with gabion, r cement.			
ORE	1.5 DEACH (1.1	0.9 TREAM COI			S PEACH			
e CIs and R	CI should be rounded to 2 decimal places. The				ADITION ON	IS FOR TH		CONDITION IN	IDEX (RCI) >>	
								I= (Sum of all C	I's)/5 MENT (CR) >>	1
	and the second	· · · · · · · ·		i santing	and the second second			I X LF X IF		
T PHO	100.	1.00			1. A. P	1	1	and a star	en en e	
									1-1-1-1	
									ALC: NOT A	
									di seri	
									et a strategi	
									2	
									the section of the	
									Sec. 1	
									A second	
									1.1.1.1	
									A. A.C.	
CRIBE P	ROPOSED IMPACT:			12						
						1.1.1.1.1.1.1		100 C.A.		
									1.	
									1. A.	
									1. 1. 1. 1.	
									and the second	
									1. 6. 6. 1.	


Project #	Applicant	tream In	Locality	Cowardin Class.	HUC	Date	Data Point	SAR length	Impact Factor	
0.114								NOTES>>		
	L ALTERATION: Stream crossin trictions, livestock	igs, riprap, concret			ightening of chani	nel, channelization	n, embankments,	NOTES		
	Negligible	Mir	nor		erate		vere			
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	the channel	40 - 60% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.		Greater than 80% by any of the char in the parameter 80% of banks s	of reach is disrupted nnel alterations listed guidelines AND/OR hored with gabion, or cement.			
SCORE	1.5	1.3	1.1	0.9	0.7).5			1.30
-	RCI should be rounded to 2 decimal places. The				NDITION UN	ITS FOR TH		CONDITION IN		1.12
TE: The CIs and I	RCI should be rounded to 2 decimal places. The	ne CR snouid be round	led to a whole number					I= (Sum of all C		1.14
								I X LF X IF	MENT (CR) >>	0
SERT PHO	DTOS:									
ESCOIDE										
ESCRIBE F	PROPOSED IMPACT:									


			e 2	m Page	ent For	ssessm	npact A	tream In	St	
Factor	Impact Facto	SAR length	Data Point	Date	HUC	Cowardin Class.	Locality		Applicant	oject #
		NOTES>>	n, embankments,	nel, channelizatio	ghtening of chann	crete blocks, strai	e, gabions, or cor	gs, riprap, concret	ALTERATION: Stream crossin	
			evere	Se	erate	I Category Mode	Conditiona	Mir	Negligible	es, constr
			of reach is disrupted nnel alterations listed guidelines AND/OR thored with gabion, or cement.	Greater than 80% by any of the cha in the parameter 80% of banks s	60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	40 - 60% of reach is disrupted by any of the channel alterations listed in the parameter	20-40% of the stream reach is	Less than 20% of the stream reach is disrupted by any of the channel	Negligible Channelization, dredging, alteration, or hardening absent. Stream has an unaltered patterm or has naturalized.	nnel ation
			0.5		0.7	0.9	1.1	1.3	1.5	ORE
CI) >>	DEX (RCI) >	CONDITION IN		ITS FOR TH	DITION UN			CONDITION I	REACH (Cls and R
	s)/5	= (Sum of all Cl'	RCI		A					
,r() >>	NENT (CR)	X LF X IF								
- ' e ' ~ '										
111										
in de										
12.42										
	T. Cart									
			- 1.1. T						ROPOSED IMPACT:	RIBE P
an 1943 -										


	St	tream Ir	npact A	ssessm	nent Fo	rm Page	e 2			
Project #	Applicant		Locality	Cowardin Class.	HUC	Date	Data Point	SAR length	Impact Factor	
	ALTERATION: Stream crossin rictions, livestock	ngs, riprap, concre	te, gabions, or cor	ncrete blocks, stra	ightening of chan	nel, channelizatio	n, embankments,	NOTES>>		
	Negligible	Mi	Conditiona nor		erate		evere		4	
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	disrupted by any of the channel	guidennes. Il	is disrupted by any of the channel	Greater than 80% by any of the cha in the parameter 80% of banks	o of reach is disrupted nnel alterations listed guidelines AND/OR shored with gabion, or cement.			
SCORE	1.5	1.3	1.1	0.9	0.7		0.5	1		1.30
TE: The CIs and R	REACH (STREAM COI	NDITION UN	ITS FOR TH		CONDITION IN	IDEX (RCI) >>	1.14
						1.1.1		I= (Sum of all C		0
	a she had a set of		. State .					I X LF X IF		U
SERT PHO	105:								1. A. A. A.	
									1. N. 1.	
									1	
									and the second	
									1.1.1	
									A	
									1.12	
									1. 69 1. 1	
ESCRIBE P	ROPOSED IMPACT:		-							
		and the second	Seat Star	Sec. Parent						
									t philippe	
									مدرم الم	

Channelz AL TERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments. NOTES>> piles, constrictions, livestock Conditional Category Noterate Severe is disrupted by any of the stream reach is disrupted by any of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines. If greater than 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If greater than 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If gui	CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, livestock NOT And piles, constrictions, livestock Conditional Category Image: Constriction of the stream reach is disrupted by any of the channel atterations listed in atterations listed in atterations listed in atterations listed in the parameter guidelines. If stream has been unattered pattern or has naturalized. Less than 20% of the channel atterations listed in the parameter guidelines. If stream nas not recovered. 60 - 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream nas not recovered. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream meander pattern has not recovered. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream nas not recovered. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream meander pattern has not recovered. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream meander pattern has not recovered. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream meander pattern has not recovered. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream meander pattern has not recovered. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. If stream meander pattern has not recovered. Greater than 80% of reach is di	DITION IN m of all C REQUIRE		
	Interview Conditional Category Negligible Minor 40-80% of reach is disrupted by any of the channel aterations listed in the parameter guidelines. If stream has been channelized, unatered pattern or has naturalized. Less than 20% of the stream reach is stream reach is the channel aterations listed in the parameter guidelines. If stream has been channelized, order the parameter guidel	DITION IN m of all C REQUIRE	IDEX (RCI) >>	
	Intersteele Conditional Category Negligible Minor Avaderate Severe Image: Intersteele Inte	DITION IN m of all C REQUIRE	IDEX (RCI) >>	
Negligible Minor Reversion Seversion Seversion output determined in the stamm one i	Negligible Minor Moderate Severe namel eration Less than 20% of the stream reach is hardening absent. Stream has an unattered patterm or has naturalized. Less than 20% of the stream reach is disrupted by any of disrupted by any the channel atterations listed in the parameter guidelines. Go-80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. Greater than 80% of reach is disrupted by any of the channel atterations listed in the parameter guidelines. Greater than 80% of reach is disrupted by any of the channel atterations isted in the parameter guidelines. CORE 1.5 1.3 1.1 0.9 0.7 0.5 REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH THE REACH CONI RCI (Sum COMPENSATION F COMPENSATION F	m of all C REQUIRE	IDEX (RCI) >>	
	hannel teration Less than 20% of the stream reach is disrupted by any of hardening absent. Stream has an unaltered pattern or has naturalized. Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines. is disrupted by any of the channel alterations listed in the parameter guidelines. Greater than 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. CORE 1.5 1.3 1.1 0.9 0.7 0.5 The Cis and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.	m of all C REQUIRE	IDEX (RCI) >>	
REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH The Claured RCI about the resoluted the resoluted the resolute the whole the resoluted the resolu	REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number. THE REACH CONI RCI= (Su COMPENSATION F CR = RCI X LF	m of all C REQUIRE	DEX (RCI) >>	_
The GL and RC aloudd be readed to 2 decimal places. The CR behald be received to a whole number. THE REACH CONDITION INDEX (RCI) > 1 RCI = (Quint of all CTS)/5 COMPENSATION REQUIREMENT (CR) > COMPENSATION REQUIREMENT (CR)	The Cis and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number. THE REACH CONI RCI= (Su COMPENSATION F CR = RCI X LF	m of all C REQUIRE	DEX (RCI) >>	1.
RCI (Sum of all CPsy)S COMPENSATION REQUIREMENT (CR) >> CR = RCI X LF X JF CR = RCI X LF X JF	RCI= (Su COMPENSATION F CR = RCI X LF	m of all C REQUIRE		4
ERT PHOTOS:	CR = RCI X LF		l's)/5	
			MENT (CR) >>	
SCRIBE PROPOSED IMPACT:				
SCRIBE PROPOSED IMPACT:				
SCRIBE PROPOSED IMPACT:			A	
CRIBE PROPOSED IMPACT:			20.2	
SCRIBE PROPOSED IMPACT:				
SCRIBE PROPOSED IMPACT:			1.	
	SCRIBE PROPOSED IMPACT:			
			at a start	
			a cont	
			1	
			1. 1. 1. 1.	

Locality Sings, riprap, concrete, gabions, or c Condition Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines. 1.3 1.1 CONDITION INDEX and s. The CR should be rounded to a whole numb	All Category Moderati 40 - 60% of reach 60 - is disrupted by any is of of the channel of alterations listed in alter guidelines. If g guidelines. If g guidelines. If g guidelines. If g stream has been stre pattern has not stream meander pattern has not pattern has not pattern has not stream Meander pattern has not pattern has not pa	e Greater that suppled by any the channel rations listed in greater that by any of the sameter juidelines. If annelized, ormal stable eam meander tittem has not recovered.	ization, embankments, Severe n 80% of reach is disrupted te channel alterations listed meter guidelines AND/OR anks shored with gabion, prap. or cement. 0.5 CHIS REACH THE REACH RC COMPENSAT		s)/5
Condition Minor Less than 20% of the stream reach is or disrupted by any of the channel atterations listed in the parameter guidelines. 1.3 1.1 H CONDITION INDEX and	All Category Moderati 40 - 60% of reach 60 - is disrupted by any is of of the channel of alterations listed in alter guidelines. If g guidelines. If g guidelines. If g guidelines. If g stream has been stre pattern has not stream meander pattern has not pattern has not pattern has not stream Meander pattern has not pattern has not pa	e Greater that suppled by any the channel rations listed in greater that by any of the sameter juidelines. If annelized, ormal stable eam meander tittem has not recovered.	Severe n 80% of reach is disrupted te channel alterations listed meter guidelines AND/OR anks shored with gabion, prap. or cement. 0.5 CHIS REACH THE REACH RC COMPENSAT	CONDITION INI I= (Sum of all CI' TION REQUIREM	s)/5
Condition Minor Less than 20% of the stream reach is or disrupted by any of the channel atterations listed in the parameter guidelines. 1.3 1.1 H CONDITION INDEX and	All Category Moderati 40 - 60% of reach 60 - is disrupted by any is of of the channel of alterations listed in alter guidelines. If g guidelines. If g guidelines. If g guidelines. If g stream has been stre pattern has not stream meander pattern has not pattern has not pattern has not stream Meander pattern has not pattern has not pa	e Greater that suppled by any the channel rations listed in greater that by any of the sameter juidelines. If annelized, ormal stable eam meander tittem has not recovered.	Severe n 80% of reach is disrupted te channel alterations listed meter guidelines AND/OR anks shored with gabion, prap. or cement. 0.5 CHIS REACH THE REACH RC COMPENSAT	CONDITION INI I= (Sum of all CI' TION REQUIREM	s)/5
Minor Less than 20% of the stream reach is disrupted by any of the channel d. alterations listed in the parameter guidelines. 20-40% of the stream reach is disrupted by any the channel alterations listed in the parameter guidelines. 1.3 1.1 H CONDITION INDEX and	Moderati 40 - 60% of reach 60 - is disrupted by any is disidiant of the channel of atterations listed in atter atterations listed in atter of atterations listed in atter of guidelines. If guidelines. If guidelines. If guidelines. If normal stable normal stable in stream meander stream meander stream meander stream meander guidelines. If normal stable normal stable 0.9 STREEAM CONDI	80% of reach srupted by any it the channel e parameter taitons listed in e parameter tin dhannelized, ormal stable eam meander trecovered. 0.7	n 80% of reach is disrupted e channel alterations listed meter guidelines AND/OR anks shored with gabion, prap. or cement. 0.5 E THIS REACH THE REACH THE REACH RC COMPENSAT	CONDITION INI I= (Sum of all CI' TION REQUIREM	s)/5
or discupted by any of the channel d. alterations listed in the parameter guidelines. stream reach is discupted by any the channel alterations listed in the parameter guidelines. 1.3 1.1 H CONDITION INDEX and	is disrupted by any is di of the channel atterations listed in alter distances of the parameter guidelines. If stream has been stream meander pattern has not recovered. 0.9 STREAM CONDI	snupled by any rations listed in e parameter uiddelines. If aam has been hannelized, mean meander tittem has not recovered. Greater tha by any of th in the para 80% of b n 00% of b annelized, n n 00% of b annelized, n n	e channel alterations listed meter guidelines AND/OR anks shored with gabion, prap. or cement. 0.5 THIS REACH THE REACH RC COMPENSAT	CONDITION INI I= (Sum of all CI' TION REQUIREM	s)/5
I CONDITION INDEX and	0.9 STREAM CONDI	0.7	THIS REACH THE REACH RC COMPENSAT	I= (Sum of all CI'	s)/5
			THE REACH RC COMPENSAT	I= (Sum of all CI'	s)/5
s. The CR should be rounded to a whole numt	ver.		RC COMPENSAT	I= (Sum of all CI'	s)/5
			COMPENSAT		
					MENT (CR) >>

	S	tream Ir	npact A	ssessm	ent For	m Page	2			
Project #	Applicant		Locality	Cowardin Class.	HUC	Date	Data Point	SAR length	Impact Factor	
				and the second				autoration du		
	L ALTERATION: Stream crossin trictions, livestock	ngs, riprap, concre		E and a start of the	ghtening of chanr	nel, channelization	, embankments,	culvert and protection a		
	Negligible	Mi	Conditiona nor	Mode	erate	Sev	rere			
hannel teration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.		40 - 60% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.	60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channeized, normal stable stream meander pattern has not recovered.	Greater than 80% of by any of the chang in the parameter g	nel alterations listed uidelines AND/OR ored with gabion,			
CORE	1.5	1.3	1.1	0.9	0.7		.5			1.3
The Cla and J	RCI should be rounded to 2 decimal places. T				NDITION UN	ITS FOR THI				1.2
: The CIS and I	RCI SIIOUIU DE IOUIIQEU IO 2 GECINIAI Places. I	ne cri snoulu be louin					RC	I= (Sum of all C	l's)/5	1.2
								I X LF X IF	MENT (CR) >>	0
									2001 D. 100	
SCRIBE F	PROPOSED IMPACT:									

Identifier:

Kristiansand - 1

Location:

Go-Karts Plus (southern end of parking lot)

Existing Conditions:

Existing curb cut from parking lot into grassed swale.

Potential Improvements:

Install bioretention filter or engineered swale. May be difficult to daylight underdrains.

Identifier:

Kristiansand - 2

Location:

Go-Karts Plus (overflow parking to the north)

Existing Conditions:

Runoff from parking lot discharges via gravel channel to low spot near railroad tracks and adjacent field.

Potential Improvements:

Construct infiltration/bioretention basin or shallow marsh facility, pending further soil evaluation at outfall.

		-		
Id	on	4	Fin	
IU	сu		110	

Kristiansand - 3

Location:

Go-Karts Plus

Existing Conditions:

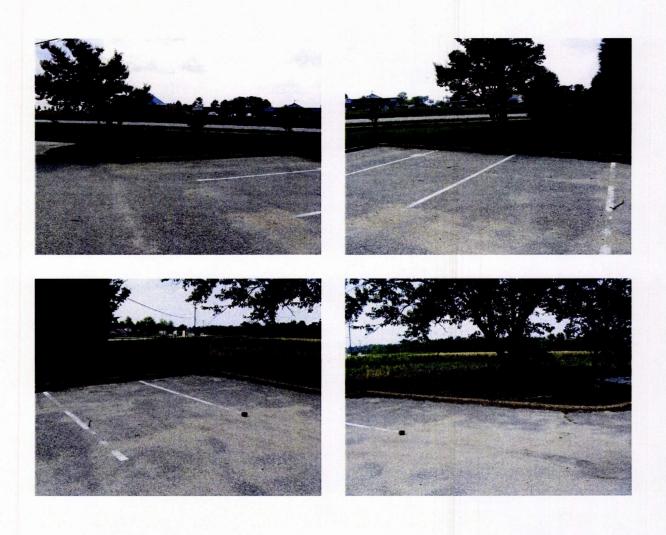
Overflow from water feature discharges to parking lot. Depending on treatment techniques employed, could be a point source pollution problem. Additional review of facility needed to identify other potential point sources such as fuel and vehicle storage areas.

Potential Improvements:

Modify water feature overflow or treatment techniques to avoid discharge of harmful chemicals downstream to surface waters. Employ spill prevention and/or containment measures at any other hot spots onsite.

Kristiansand - 4

Location:


Go-Karts Plus (northern edge of parking lot)

Existing Conditions:

Open areas adjacent to curb and gutter along parking lot.

Potential Improvements:

Install curb cuts and offline bioretention filters treating parking lot. May be difficult to daylight underdrains.

Identifier: Kristiansand - 5

Location: Colonial Towne Plaza (southeast of shopping center near Tequila Rose)

Existing Conditions:

Uncontrolled runoff from parking lot draining towards Rt. 60. Some trash present near roadway.

Potential Improvements:

Construct bioretention filter to treat parking lot runoff immediately north of the entrance near Tequila Rose. Biofilter could be installed within the open space adjacent to the Rt. 60 right-of-way. Removal of excess pavement could be considered to increase biofilter size. Likely, a trench drain will need to be installed across the entrance to capture the parking lot runoff. Underdrains could daylight into Rt. 60 ditch. Remove existing trash.

Kristiansand - 6

Location: Colonial Towne Plaza (southeast of Shopping Center behind Tequila Rose)

Existing Conditions:

Uncontrolled runoff from Tequila Rose draining to adjacent open field. Some bare soil in field.

Potential Improvements:

Treat runoff with bioretention filter or level spreader/filter strip. Stabilize any barren areas with permanent seeding and soil amendments (as needed).

Identifier: Kristiansand - 7

Location: Colonial Towne Plaza (northwest of Shopping Center, behind buildings)

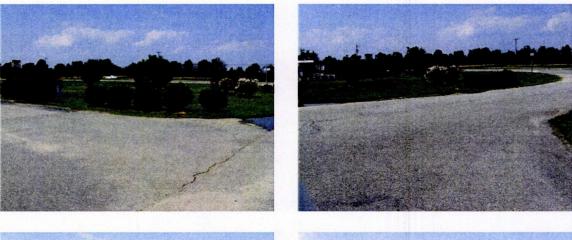
Existing Conditions:

Bare soils resulting in noticeable sediment discharge during storm events (as observed on 7/8/08) as surface runoff flows across this area.

Potential Improvements:

Provide sufficient erosion stabilization in barren areas (such as minor grading, soil amendments, and matting). Evaluate the need for a conveyance channel adjacent to the existing gravel access road.

Identifier: Kristiansand - 8


Location: Colonial Towne Plaza (northeast of Shopping Center near Antique Mall)

Existing Conditions:

Uncontrolled runoff from much of the parking lot draining into an open area near Rt. 60. There are multiple drop inlets located near Rt. 60 receiving the runoff, one covered with debris and damaged.

Potential Improvements:

Construct a stormwater management basin within the open area between the Shopping Center and the Antique Mall. Repair the existing storm sewer system and modify to accommodate the basin outlet structure. The use of an enhanced extended-detention basin (shallow marsh) or an infiltration/bioretention facility should be explored pending further soil evaluation.

Id	en	tif	fie	er:

Kristiansand - 9

Location:

Behind BayLands Federal Credit Union west of Rt. 60

Existing Conditions:

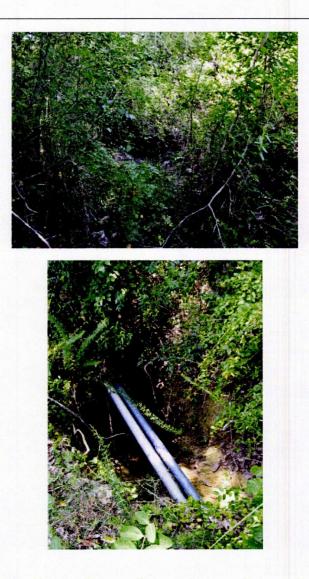
Grassed swales convey runoff from bank into detention basin. An existing pipeline is exposed across the facility.

Potential Improvements:

Improve grassed swales to better promote infiltration. Improvements may include soil amendments and/or installation of check dams. Convert detention basin into a shallow marsh facility. Further review of existing pipeline needed to determine any design implications it may introduce, such as limited wet pool areas.

Kristiansand - 10

Location:


Between Econo Lodge and BayLands Federal Credit Union

Existing Conditions:

Uncontrolled runoff from Rt. 60 causing major erosion downstream of outfall, exposed utilities, and incised channel.

Potential Improvements:

Pending intended use of barren lot adjacent to Econo Lodge, a stormwater management basin could be constructed upstream of existing stream channel. Proposed BMP may be a retention pond or enhanced extended-detention facility, pending detailed design considerations. New BMP construction would require significant grading and adjustment of storm sewer outfall. Stabilize downstream headcut and restore incised portions of stream channel. At a minimum, proper energy dissipation and headcut stabilization required at outfall.

Kristiansand - 11

Location: Econo Lodge (southeast of parking lot near entrance)

Existing Conditions:

Open space adjacent to parking lot. Curb and gutter along parking lot edge.

Potential Improvements:

I

Kristiansand - 12

Location: Econo Lodge (along southern edge of parking lot)

Existing Conditions:

Open space/brush adjacent to parking lot, curb and gutter along parking lot edge.

Potential Improvements:

Kristiansand - 13

Location: Econo Lodge (southwest corner of parking lot near dumpster)

Existing Conditions:

Open space/brush adjacent to parking lot, curb and gutter along parking lot edge.

Potential Improvements:

Kristiansand - 14

Location: Econo Lodge (western edge of parking lot near swimming pool)

Existing Conditions:

Open space adjacent to parking lot. Curb and gutter along parking lot edge.

Potential Improvements:

Kristiansand - 15

Location: Behind lot northeast of Winterberry Drive cul-de-sac


Existing Conditions:

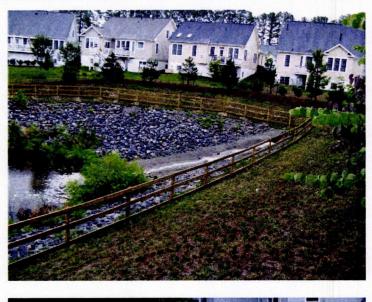
Stream channel close to existing deck, with bank erosion occurring.

Potential Improvements:

Stabilize stream bank along property line, in particular the outside bend at the northeast corner of the parcel.

I

Kristiansand - 16


Location: At end of Pinebrook Rd, north of Winterberry Ct

Existing Conditions:

Existing retention pond with majority of side slopes lined with riprap.

Potential Improvements:

Replace riprap slopes with natural buffer enhancement and aquatic bench. May also consider extending natural buffer zone beyond perimeter fence rather than maintained turf pending authorization from Colonial Heritage. At a minimum, consider the use of additional joint planting throughout riprap if replacement is not feasible. Further review of outlet structure design may also identify potential optimization for enhanced water quality treatment and/or channel protection.

Kristiansand - 17

Location:

I

Behind houses north of Pinebrook Rd and east of Levingston Ln

Existing Conditions:

Concrete level spreader and filter strip which appears to be functioning well. Some barren areas near treeline.

Potential Improvements:

Install bioretention filter upslope of level spreader. Repair bare spots. Consider the use of natural buffer enhancement downslope rather than just maintained turf.

Kristiansand - 18

Location:

North of Pinebrook Rd, between Newport Forest and Livingston Lon

Existing Conditions:

Concrete level spreader and filter strip which appear to be functioning moderately well, but downslope area is relatively steep with some rills forming. May be too steep/channelized for proper function of filter strip.

Potential Improvements:

Construct bioretention filter upslope of level spreader. Recommend removing level spreader and provide stable conveyance down slope, especially if erosion problems begin to occur. At a minimum, ensure ends of level spreader are fully tied into slopes, repair rills, and consider the use of natural buffer enhancement downslope.

I

Kristiansand - 19

Location: West of Pinebrook Rd, between Sandford Arms and Newport Forest

Existing Conditions:

Existing dry detention basin.

Potential Improvements:

Convert basin to an enhanced shallow marsh facility. Provide additional upland buffer plantings around buffer perimeter.

Kristiansand - 20

Location:

Northwest of intersection of Arthur Hills Dr and Pinebrook Rd

Existing Conditions:

Existing detention basin with forebay near intersection and preserved wooded buffer within basin interior.

Potential Improvements:

Enhance the cleared portions of basin (including forebay) with shallow marsh plantings and/or micro-pools. Avoid disturbance of mature trees during retrofit activities.

			-	
1 d	en	111	16	>r.
IU	~			

Kristiansand - 21

Location:

I

West of Sprucemont

Existing Conditions:

Overland flow down grassed slope to riprap check dam at transition to stream. Erosion occurring along slope and at interfaces of riprap berm.

Potential Improvements:

Repair erosion and provide a stabilized flow path down slope. May also be potential to construct biofiltration filter or shallow marsh basin pending further soil review.

Kristiansand - 22

Location:

North of Arthur Hills Dr, between St Albans and Garden View

Existing Conditions:

Existing dry detention basin, with forebay separated by riprap berm. Some erosion present on bottom of basin.

Potential Improvements:

Maximize the basin area and convert to a wet pond or an enhanced shallow marsh facility. Provide additional upland buffer plantings around basin perimeter. At a minimum, repair erosion areas and construct a more stable pilot channel.

Kristiansand - 23

Location:

North of Valley Green

Existing Conditions:

Riprap apron at storm sewer outfall. Appears to be stable.

Potential Improvements:

Construct small stormwater basin (such as a shallow marsh) within apron area for improved water quality treatment.

1

Kristiansand – 24

Location: North of Arthur Hills Dr, between Cliffside Drive and St. Albans

Existing Conditions:

Existing drop inlet receiving residential drainage in between multiple lots.

Potential Improvements:

Construct bioretention filter around existing drop inlet.

Id	en	tif	ie	r
IU	CIII	UII.	10	

Kristiansand - 25

Location:

South of Nina Lane, between Drammon Ct and Sandstad Ct

Existing Conditions:

Existing concrete channel conveying stormwater from roadway to stream. Segments of the channel are damaged and clogged with debris. The ultimate outfall has a significant amount of sediment accumulation upstream of an apparent riprap check dam. Some erosion occurring between riprap and stream channel.

Potential Improvements:

Repair damaged segments of channel and remove debris. Remove and dispose of sediment at channel outfall. Modify outfall and/or extend riprap protection as needed to ensure stable transition to stream channel.

Kristiansand - 26

Location:

South of Nina Lane, between Drammon Ct and Sandstad Ct

Existing Conditions:

Drop inlet conveying roadside drainage to concrete channel between the existing residences.

Potential Improvements:

Install a bioretention filter in the location of the drop inlet which may require a moderate amount of earthwork to construct, but there is ample space. Coordination with the homeowner will be critical.

d	entifier:	
IU	chunch.	

Kristiansand - 27

Location:

Herstad Ct Cul-de-sac

Existing Conditions:

Stormwater runoff from existing roadways is collected in concrete ditches and transported to this outfall culvert which connects to a manhole in the adjacent property owner's backyard and ultimately to the stream channel.

Potential Improvements:

Remove and dispose of sediment and debris from downstream invert. Modify outfall and/or provide outlet protection as needed to ensure stable transition to stream channel.

1d	entifier:
IU	cuture.

Kristiansand - 28

Location:

West of Torea Court, downstream of Retrofit # 29

Existing Conditions:

Shallow swale conveying stormwater runoff through existing woods. Not well defined flowpath and some erosion present within the swale. Headcut formed at confluence with stream channel.

Potential Improvements:

Improve existing swale to better promote infiltration. Improvements may include minor grading, soil amendments, and/or installation of check dams. Repair and stabilize all eroded areas. Provide headcut stabilization.

Kristiansand - 29

Location:

South of Nina Lane, between Kroken Court and Haradd Lane

Existing Conditions:

A culvert outfall from the roadside ditch to an open space parcel behind the existing residences. The precise outfall location could not be determined and may be buried beneath yard waste. Ultimately, the runoff is conveyed into a shallow swale through the existing woods.

Potential Improvements:

Remove any debris blocking culvert outfall and provide adequate outlet protection and/or transition channel. Potential for installation of BMP within the open space parcel, such as a shallow marsh or infiltration/bioretention basin pending further review.

			-	
Id	on	tif	10	
IU	CII	un	IC	

Kristiansand - 30

Location:

I

Stravenger Ct Cul-de-sac

Existing Conditions:

Existing concrete channel conveying stormwater from roadway to stream. Segments at the channel are damaged and undermined by scour along sides.

Potential Improvements:

Repair damaged segments of channel. Fill back in scour holes and stabilize. Modify outfall and/or provide outlet protection as needed to ensure stable transition to stream channel.

1.1	en	4.1	C ~	
10	en		пе	r .

Kristiansand - 31

Location: West of Haradd Lane before cul-de-sac

Existing Conditions:

Erosion noted at outfall of roof downspouts.

Potential Improvements:

Repair/stabilize erosion areas and ensure surface drainage is conveyed down the slope in a stabilized manner (such as slope drains, conveyance channels, or rock chutes).

Kristiansand - 32

Location:

Corner of Telemark Drive and Rodane Place

Existing Conditions:

Open space parcel leading to stream channel. A substantial amount of yard waste is piled along the treeline near the roadway. Roadway storm sewer discharges to stream at toe of slope. Extensive gully erosion present upslope of outfall and channel erosion downstream. Some debris and sediment clogging part of pipe.

Potential Improvements:

Excavate back from storm sewer outfall and shorten pipe. Install energy dissipation at outfall and repair/stabilize all eroded areas. May be potential to construct small shallow marsh facility between outfall and stream channel, pending earthworks.

Kristiansand - 33

Location:

Western edge of Williamsburg Village

Existing Conditions:

Appears to be a large, shallow dry detention/infiltration facility, but currently under construction. Some sediment accumulation and rill erosion present. Pretreatment swales direct runoff from condos to basin. Drop inlet structure uncovered and clogged with debris. Standing water within riser, and outfall pipe could not be located.

Potential Improvements:

Remove and dispose of accumulated sediment. Install nested bioretention filter within basin area. Potential for compost amended soils and enhanced vegetative cover for improved water quality treatment. Remove debris from drop inlet, locate and remove blockage, replace top of inlet structure, and ensure outfall pipe is properly daylighted. Additional review may yield potential to optimize outlet structure for improved water quality treatment and channel protection.

Kristiansand - 34

Location: Southern edge of Williamsburg Village

Existing Conditions:

Dry detention basin with timber weir wall and perforated pipe outlet.

Potential Improvements:

Convert to an infiltration/bioretention basin or shallow marsh facility pending further soil evaluation. Ensure ends of weir wall are fully tied into slopes.

Kristiansand - 35

Location:


Between Williamsburg Village and Williamsburg Dodge

Existing Conditions:

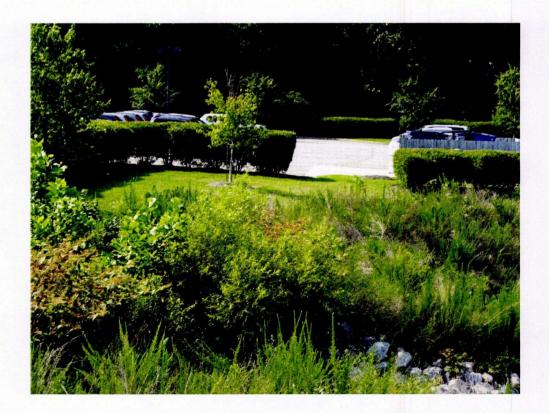
Existing wet pond and wetland fringe. Low flow orifice does not have a debris rack, but currently not clogged. Large areas of riprap at inflow points. Some barren areas in uplands.

Potential Improvements:

Install debris rack over low flow orifice. Provide soil amendments and permanent seeding in any barren areas. Provide joint plantings within riprap areas, where appropriate, or replace with vegetated buffer. Evaluate the potential to expand the pond size (may be some room adjacent to parking lot of Williamsburg Dodge) and/or adjust outlet structure to treat other contributing areas than initially designed for. Should also consider installing submerged gabion wall across inflow points to create sediment forebays.

Kristiansand - 36

Location:


Parking lot in rear of Williamsburg Dodge

Existing Conditions:

Open area adjacent to parking lot near existing curb inlet.

Potential Improvements:

Construct curb cuts and offline bioretention filter or infiltration trench between parking lot and existing pond.

Kristiansand - 37

Location:

Between Williamsburg Village and Williamsburg Dodge

Existing Conditions:

Concrete channel receiving flow from Rt. 60 and adjacent development. Channel ultimately outfalls to existing pond discussed in Retrofit #35. A large amount of sediment accumulation is present at bottom of channel, burying what is assumed to be a drop inlet connecting to the pond.

Potential Improvements:

Remove and dispose of accumulated sediment. Construct an offline bioretention filter at end of channel (downslope of drop inlet). Alternately, a pre-treatment sediment forebay could be constructed at the end of the channel and outfall adjusted accordingly. Further evaluation could also be provided to determine the feasibility of replacing the concretelined channel with another which better promotes infiltration. This may consist of a grassed swale with soil amendments and check dams (however the longitudinal slope and number of check dams could be problematic).

Kristiansand - 38

Location:

Corner of Norge Office Park

Existing Conditions:

Existing gravel infiltration trench adjacent to parking lot. Some sediment accumulation/bare soil present at inlet to basin. The overflow structure is near level with the basin surface. Another riser is present which appears to contain electrical features, but is not covered.

Potential Improvements:

Remove and dispose of accumulated sediment and ensure inflow to basin is stabilized. Recommend extending overflow structure so that a larger amount of surface ponding is possible before bypassing. Evaluate the additional riser and electrical features to ensure the basin function does not create a concern. A locked cover should be provided over electrical area to prevent tampering (especially considering that children may have played within the basin in the past, as visible in the stone alignment on the overflow structure). Additionally, to improve the aesthetic value of the facility, perimeter landscaping and/or a surface layer of topsoil and vegetative ground cover could be employed. If the basin is to be topdressed, further evaluation of its function should be performed to ensure water quality benefits are not compromised and to determine the new design configuration.

Identifier:

Kristiansand - 39

Location:

Norge Office Park (southeast corner)

Existing Conditions:

Existing gravel infiltration trench adjacent to parking lot. Appears to be functioning well.

Potential Improvements:

To improve the aesthetic value of the facility, perimeter landscaping and/or a surface layer of topsoil and vegetative ground cover could be employed. If the basin is to be topdressed, further evaluation of its function should be performed to ensure water quality benefits are not compromised and to determine the new design configuration (may require an overflow structure).

			-			
14	en	tii	Ξ.	0	r	
IU	CII			C		

Kristiansand - 40

Location:

Norge Office Park (northeast corner)

Existing Conditions:

Existing gravel infiltration trench adjacent to parking lot. Appears to be functioning well.

Potential Improvements:

To improve the aesthetic value of the facility, perimeter landscaping and/or a surface layer of topsoil and vegetative ground cover could be employed. If the basin is to be topdressed, further evaluation of its function should be performed to ensure water quality benefits are not compromised and to determine the new design configuration (may require an overflow structure).

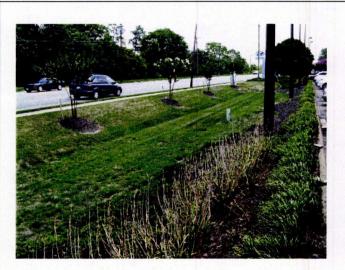
Identifier:	Kristiansand - 41
Location:	Shops at Kristiansand, North of Nina Lane

Existing Conditions:

Existing concrete-lined channels and grassed swales receiving runoff from Nina Lane and the Shops at Kristiansand. Some sediment accumulation within concrete channels.

Potential Improvements:

Improve existing channels to better promote infiltration. Improvements may include minor grading, soil amendments, and/or check dams. Remove and dispose of accumulated sediment. Further evaluate the concrete channels to determine if they can be replaced by grassed swales with check dams. Alternately, bioretention filters could be installed within select areas of the swale.


Identifier:	Kristiansand - 42
Location:	Front of Williamsburg Honda

Existing Conditions:

Existing infiltration basin between Rt. 60 and parking lot of Williamsburg Honda which appears to be functioning well.

Potential Improvements:

Identified in Yarmouth Creek Watershed Plan (104-R1). Enhance existing basin by adding landscaping and mulch layer to function more like a bioretention facility.

Identifier:

Kristiansand - 43

Location:

Norge Elementary School (southeast corner of parking lot near Rt. 60

Existing Conditions:

Open area adjacent to parking lot receiving surface runoff from pavement. Some sediment accumulation at edge of parking lot.

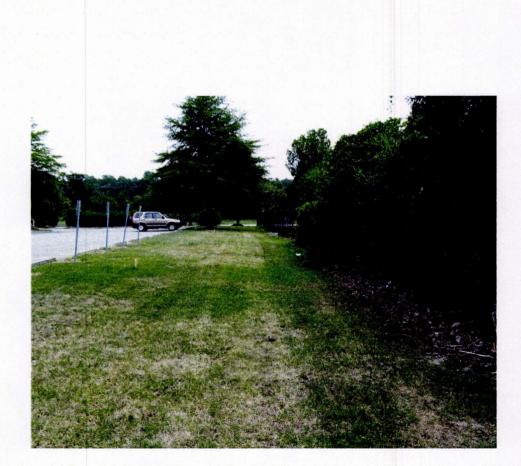
Potential Improvements:

Construct a bioretention filter or infiltration trench to treat the parking lot runoff. Remove and dispose of accumulated sediment and configure entrance to biofilter to help prevent future sediment buildup. Stabilized overflow or level spreader needed as biofilter outlet. Cooperation with the school as an educational tool is also recommended. Other retrofits not identified herein may also be feasible at the school pending further evaluation.

Identifier:

Kristiansand - 44

Location:


Norge Elementary School (southern edge of parking lot)

Existing Conditions:

Open area adjacent to parking lot receiving surface runoff from pavement.

Potential Improvements:

Construct bioretention filters, an infiltration trench, or an engineered swale to treat the parking lot runoff. Discharge into proposed Retrofit #43. Cooperation with the school as an educational tool is also recommended. Other retrofits not identified herein may also be feasible at the school pending further evaluation.

Identifier: Kristiansand - 45

Location: Norge Elementary School (south behind school, near bend in access road)

Existing Conditions:

Concrete flume conveying roadway runoff into drop inlet.

Potential Improvements:

Construct a bioretention filter around existing drop inlet. Ensure adequate protection at inflow from flume. Tie underdrains of biofilter into existing inlet. Cooperation with the school as an educational tool is also recommended. Other retrofits not identified herein may also be feasible at the school pending further evaluation.

Identifier:	Id	e	n	ti	fi	e	r	:
-------------	----	---	---	----	----	---	---	---

Kristiansand - 46

Location:

Norge Elementary School (within the school grounds)

Existing Conditions:

Multiple drop inlets (some not shown) receiving surface runoff. Building downspouts do not discharge to surface but are piped underground.

Potential Improvements:

Construct bioretention filters around existing drop inlets. Modify building downspouts in these areas to discharge above ground, across a level spreading device and grassed filter strip, and ultimately into the biofilters (similar rooftop disconnection measures may be employed elsewhere onsite). Tie underdrains of biofilters into existing inlets. Cooperation with the school as an educational tool is also recommended. Other retrofits not identified herein may also be feasible at the school pending further evaluation.

Identifier: Krist	iansand - 47
Location: Norg	e Elementary School (behind school to the west)

Existing Conditions:

Existing wetland area or shallow BMP surrounded by chain link fence. Appears to be outfall from the school storm sewer system.

Potential Improvements:

Even though this area drains away from the tributary of concern for this study (as may other portions of Norge Elementary School), it could be evaluated for potential retrofits. This area was not reviewed in great detail in this study, but there may be potential for a shallow marsh BMP retrofit, outlet protection, pre-treatment forebay, and/or existing wetland enhancement pending further evaluation.

Identifier:

Kristiansand - 48

Location: Open field west of development on Rt. 60, immediately north of school

Existing Conditions:

Runoff from commercial areas west of Rt. 60 discharge into existing open field with no defined outfall.

Potential Improvements:

Construct treatment practices downslope of developed areas. May include practices such as level spreaders, filter strips, engineered swales, bioretention filters, or infiltration basins pending further evaluation.

Identifier:

Kristiansand - 49

Location:

Open field west of Motor Lodge on Rt. 60

Existing Conditions:

Runoff from commercial areas west of Rt. 60 discharge into existing open field with no defined outfall.

Potential Improvements:

Construct treatment practices downslope of developed areas. May include practices such as level spreaders, filter strips, engineered swales, bioretention filters, or infiltration basins pending further evaluation.

KRISTIANSAND TRIBUTARY PROPERTY	
Adjacent Parcel Information	

	11D # IN)	Federal ID (FID)	Parcel Area (Acres)	Parcel Owner	Mailing Address
23201		77	2.48	FORD, SHARYN	126 RONDANE PL
	00051A	64	0.18	JCC	201 HARADD LN
232060	0001A	. 84	3.41	KRISTIANSAND HOA	208 HARADD LN
	500077	83	0.35	HILL, ERIC	101 TELEMARK DR
23206	600104	79	0.44	SCOTT, KRASTON AND SUZANNE	211 HARADD LN
23206	600105	81	-		.
23206	600107	75	0.38	DOYLE, AMY	207 HARADD LN
	600108	73	0.69	SCHMID, FREDDIE	205 HARADD LN
	500109	72	0.66	DUMONT, PAUL & BONNIE	203 HARADD LN
	500111	66	0.57	BEAN, DAVID	104 ASTRID CT 103 ASTRID CT
	500112	60	1.28	VIBRANT LIFE MINISTRIES	103 ASTRID CT 101 ASTRID CT
	500113	63	0.50	RETAN, RANDALL	119 HARADD LN
	500130	58	1.45	SNYDER, SCOTT & LYNNE	104 STAVENGER CT
	500132	47	0.96	SOLTIS, MARK CHRISTIAN	104 STAVENGER CT
	500133	41	1.64	TAINTER, LELAND & BARBARA LEACH, VERNON & DONNA	103 STAVENGER CT
	500134	45	0.79 1.72	LEACH, VERNON & DOMNA LASSITER, NANCY	104 TOREA CT
	500137	54 55	0.71	CONWAY, TODD & NATALIE	105 TOREA CT
	500138	52	0.38	RENAULT, GEORGE & LUCINDA	262 NINA LN
	500160	- 42	0.58	KRIETEMEYER, DONALD & MOLLIE	260 NINA LN
	500161	42 37	1.59	ROCKWELL, STANLEY, JR	258 NINA LN
	500162	36	1.19	ROCKWELL, MARION	1 HERSTAD CT
	500163				
	00001C	65 40	12,44	COLONIAL HERITAGE LLC. HOGANMILLER, ROBERT & BARBARA	4772 WINTERBERRY CT
	900023	40 46	0.23	JACOBI, LESLIE (TRUSTEE)	4776 WINTERBERRY CT
	900024	46 50	0.29	GARDNER, DENNIS (TRUSTEE)	4780 WINTERBERRY CT
	900025	50 49	0.24	HILLARD, ANNE	4775 WINTERBERRY CT
	900026	49 44	0.26	MAROHL, DON & SANDRA	4771 WINTERBERRY CT
	900027 900053	44 51	0.13	BOZSIK, CHARLES & LINDA LEE	7151 PINEBROOK RD
	900053 900061	56	0.13	REISACK, JOSEPH & LOUISE	4716 LEVINGSTON LN
	900062	59	0.21	ROSZKOWSKI, JOSEPH & KATHERINE	4720 LEVINGSTON LN
	900063	62	0.26	ADAMSON, JOHN & JANET	4724 LEVINGSTON LN
	900064	57	0.37	MCKENNY, MARILYNN	4723 LEVINGSTON LN
	900065	53	0.32	DOBRATZ, DUANE & NOREEN	4719 LEVINGSTON LN
	900073	43	0.13	VEASEY, WALTER & GRACE	4716 NEWPORT FRST
	900075	39	0.11	KUBA, CAROL	4723 NEWPORT FRST
	900075	38	0,11	FRANCIS, MARVIN & JINNETT	4719 NEWPORT FRST
	900075	34	0.13	LA BELLE, PATRICE	4719 SANFORD ARM
	900088	35	0.13	DILLON, PAUL & LILLIAN	4721 SANFORD ARM
	000400	80	2.61	WILLIAMSBURG VILLAGE HOA	400 KINDE CIR
	000500	82	4.09	WILLIAMSBURG VILLAGE HOA	500 RUSTADS CIR
	001200	78	0,79	WILLIAMSBURG VILLAGE, LLC.	1200 RUSTADS CIR
	001200	78	0.82	WILLIAMSBURG VILLAGE, LLC.	1300 RUSTADS CIR
	001300	71	2.06	WILLIAMSBURG VILLAGE, LLC.	1400 RUSTADS CIR
	001500	69	0.77	WILLIAMSBURG VILLAGE, LLC.	1500 RUSTADS CIR
	001800	68	1.43	WILLIAMSBURG VILLAGE, LLC.	1800 RUSTADS CIR
	001900	67	1.18	WILLIAMSBURG VILLAGE, LLC.	1900 RUSTADS CIR
	002000	70	0.28	WILLIAMSBURG VILLAGE, LLC.	2000 RUSTADS CIR
	300164	29	1.11	MORSE, COLUMBUS	3 HERSTAD CT
	300165	30	0.61	KENDALL, DEBORAH	2 HERSTAD CT
	300189	24	1.43	LUNT, DAVID & VALERIE	3 DRAMMEN CT
	300190	1	0.52	WALK, LAWRENCE, SR	1 DRAMMEN , CT
	300193	26	1.65	PINCKNEY, WILLIAM	2 SANDSTAD CT
	300194	20	0.91	MOORE, MICHAEL & SIMMONS, IDA	3 SANDSTAD CT
	300195	21	0.67	FAHRINGER, DAVID & VICTORIA	1 SANDSTAD CT
	300196	28	0.72	FAHRINGER, DAVID & VICTORIA	248 NINA LN
	700085	31	0.13	THIR, ALBERT & MARTHA	4715 SANFORD ARM
	700086	32	0.13	FRAIZE, RINALDO & CAROL	4717 SANFORD ARM
23408	800001A	33	4.38	COLONIAL HERITAGE HOA	-
	800009	0	0.11	COLLINS, PHYLLIS (TRUSTEE)	4332 SPRUCEMONT
	800010	27	0.12	OSMON, ROBERT	4347 SPRUCEMONT
2340	800011	25	0.14	MAZZEO, ANDREW & MARILYN	4343 SPRUCEMONT
	800022	18	0.14	MISTLER, DOUGLAS & CAROL	4320 GARDEN VW
	800023	19	0.14	SKINNER, ROBERT, JR & KAREN	4324 GARDEN VW
	800024	2	0.13	KALISON, PETER & MARSHA	4340 GARDEN VW
2340	800025	23	0.08	CRIST, RAYMOND & SANDRA	4344 GARDEN VW
	800026	22	0.14	CIOPPA, ALFRED, JR & JANET	4341 GARDEN VW
23412	200001A	10	1.07	COLONIAL HERITAGE LLC.	-
23412	200001B	3	8.54	COLONIAL HERITAGE HOA	
2341	200004	17	0.13	BROWN, WILLIAM, III &RENE	6937 VALLEY GRN
2341	200005	16	0.13	BARTOLICH, JEANNE & EUGENE	6933 VALLEY GRN
2341	200006	15	0.13	MACDONALD, MARY (TRUSTEE)	6929 VALLEY GRN
2341	200007	14	0.13	YUHONG, JUNG & YU, SUNHA	6925 VALLEY GRN
2341	200008	13	0.11	CAVANAUGH, DONALD & JOYCE	6915 VALLEY GRN
	200010	12	0.11	JENKINS, ELBERT (TRUSTEE)	6905 VALLEY GRN
	200011	11	0.11	MYERS, HARRY, JR, & SHARON	6901 VALLEY GRN
	200015	. 9	0.13	JENNINGS, THOMAS & LINDA	4209 CLIFFSIDE DR
	200016	7	0.13	BOYDEN, RICHARD & BENDER, KATHRYN	4205 CLIFFSIDE DR
	200018	4	0.16	RIFFER, WILLIAM & CECILIA	6884 ARTHUR HILLS DR
	200019	5	0.16	MAROHL, DON & SANDRA	6888 ARTHUR HILLS DR
	200020	6	0.19	GORDON, QUINTON & IDELLE	6896 ARTHUR HILLS DR
	200021	8	0.31	KIM, PILKYU & BOCKSOON	6900 ARTHUR HILLS DR
	100008	76	6.40	DODSON, JOHN	7101 RICHMOND RD
	100011	61	2.02	WARE, DAVID	7049 RICHMOND RD
2410					7031 RICHMOND RD

*Parcel locations are referenced on the Stream Condition Summary Map via the Parcel Identification Number (PIN)

3935 FILL

L. Preston Bryant, Jr. Secretary of Natural Resources Joseph H. Maroon Director

1

COMMONWEALTH of VIRGINIA DEPARTMENT OF CONSERVATION AND RECREATION

217 Governor Street Richmond, Virginia 23219-2010 (804) 786-7951 FAX (804) 371-2674

June 2, 2008

Stephanie Friend Williamsburg Environmental Group 5209 Center Street Williamsburg, VA 23188

Re: JCC - Kristiansand

Dear Ms. Friend:

The Department of Conservation and Recreation's Division of Natural Heritage (DCR) has searched its Biotics Data System for occurrences of natural heritage resources from the area outlined on the submitted map. Natural heritage resources are defined as the habitat of rare, threatened, or endangered plant and animal species, unique or exemplary natural communities, and significant geologic formations.

According to the information currently in our files there is potential for the Virginia least trillium (*Trillium pusillum* var. *virginianum*, G3T2/S2/SOC/NL) to be within the project limits. Virginia least trillium is a state rare perennial herb that primarily inhabits somewhat acidic, moist to saturated soils, although it does not grow in standing water. The plant is most often found on the margins of swamps, on high spots within swamps or in ground-water seepage areas. Direct destruction of individuals, loss of habitat, and alterations of water quality are the primary threats to this species (Clark and Potter, 1995). This herb species blooms from late March to May (Radford et. al., 1968). Please note that this species is currently tracked as a species of concern by the United States Fish and Wildlife Service (USFWS), however this designation has no official legal status.

Due to the potential for this site to support populations of this natural heritage resource, DCR recommends an inventory for the resource in the study area. With the survey results we can more accurately evaluate potential impacts to natural heritage resources and offer specific protection recommendations for minimizing impacts to the documented resources.

Under a Memorandum of Agreement established between the Virginia Department of Agriculture and Consumer Services (VDACS) and the Virginia Department of Conservation and Recreation (DCR), DCR represents VDACS in comments regarding potential impacts on state-listed threatened and endangered plant and insect species. The current activity will not affect any documented state-listed plants or insects.

In addition, our files do not indicate the presence of any State Natural Area Preserves under DCR's jurisdiction in the project vicinity.

State Parks • Soil and Water Conservation • Natural Heritage • Outdoor Recreation Planning Chesapeake Bay Local Assistance • Dam Safety and Floodplain Management • Land Conservation New and updated information is continually added to Biotics. Please contact DCR for an update on this natural heritage information if a significant amount of time passes before it is utilized.

1

A fee of \$125.00 has been assessed for the service of providing this information. Please find enclosed an invoice for that amount. Please return one copy of the invoice along with your remittance made payable to the Treasurer of Virginia, Department of Conservation and Recreation, 203 Governor Street, Suite 423D, Richmond, VA 23219, ATTN: Cashier. Payment is due within thirty days of the invoice date. Please note late payment may result in the suspension of project review service for future projects.

The Virginia Department of Game and Inland Fisheries maintains a database of wildlife locations, including threatened and endangered species, trout streams, and anadromous fish waters, which may contain information not documented in this letter. Their database may be accessed from http://www.dgif.virginia.gov/wildlife/info_map/index.html, or contact Shirl Dressler at (804) 367-6913.

Should you have any questions or concerns, feel free to contact me at (804) 692-0984. Thank you for the opportunity to comment on this project.

Sincerely,

Kristal McKelvey Coastal Zone Locality Liaison

Cc: Tylan Dean, USFWS

Literature Cited

1

Clark, K.H. and J.L. Potter. 1995. North Landing River Natural Area Preserve Resource Management Plan, First Edition. Natural Heritage Technical Document 95-9. Virginia Department of Conservation and Recreation, Richmond, Virginia. February 1995.

Q.

Radford, A.E., H.A. Ahles, C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. University of North Carolina Press, Chapel Hill. p. 292

Virginia Department of Game and Inland Fisheries

5/8/2008 2:41:12 PM

Fish and Wildlife Information Service

VaFWIS Search Report Compiled on 5/8/2008, 2:41:12 PM

Help

Known or likely to occur within a 2 mile radius of 37,21,26. 76,46,20.

in 095 James City County, 199 York County, VA

496 Known or Likely Species ordered by Status Concern for Conservation (displaying first 46) (46 species with Status* or Tier I**)

BOVA Code	<u>Status*</u>	Tier**	Common Name	Scientific Name	Confirmed	Database(s)
030074	FESE		<u>Turtle, Kemp's (=</u> <u>Atlantic) Ridley</u> <u>sea</u>	Lepidochelys kempii		BOVA
030071	FTST	I	Turtle, loggerhead	Caretta caretta		BOVA
040120	FTST	Ι	Plover, piping	Charadrius melodus		BOVA
020052	SE	II	Salamander, eastern tiger	Ambystoma tigrinum tigrinum		BOVA
030013	SE	II	Rattlesnake, canebrake	Crotalus horridus		BOVA
040096	ST	Ι	Falcon, peregrine	Falco peregrinus	Yes	CBC,BOVA
040129	ST	I	Sandpiper, upland	Bartramia longicauda		BOVA
040293	ST	Ι	Shrike, loggerhead	Lanius ludovicianus	Yes	CBC,BOVA
020044	ST	Ш	Salamander, Mabee's	Ambystoma mabeei		BOVA
020002	ST	II	Treefrog, barking	Hyla gratiosa		BOVA
040093	ST	II	Eagle, bald	Haliaeetus leucocephalus	Yes	BBA,CBC,BOVA
040292	FSST		Shrike, migrant loggerhead	Lanius ludovicianus migrans		BOVA
040110	FS	I	Rail, black	Laterallus jamaicensis		BOVA
010032	FSSS	II	Sturgeon, Atlantic	Acipenser oxyrinchus		BOVA
030067	FSCC	II	Terrapin, northern diamond-backed	Malaclemys terrapin terrapin	16	BOVA
040320	FS	II	Warbler, cerulean	Dendroica cerulea		BOVA
100001	FS	IV	fritillary, Diana	Speyeria diana		BOVA
010077	SS	Ι	Shiner, bridle	Notropis bifrenatus		BOVA

040029	SS	II	Heron, little blue	Egretta caerulea caerulea		BOVA
040381	SS	II	Sparrow, saltmarsh sharp-tailed	Ammodramus caudacutus		BOVA
040186	SS	II	Tern, least	Sterna antillarum		BOVA
040266	SS	II	Wren, winter	Troglodytes troglodytes	<u>Yes</u>	CBC,BOVA
030063	CC	III	Turtle, spotted	Clemmys guttata		BOVA
040094	SS	III	Harrier, northern	Circus cyaneus	Yes	CBC,BOVA
040034	SS	III	Heron, tricolored	Egretta tricolor		BOVA
040040	SS	III	Ibis, glossy	Plegadis falcinellus		BOVA
040036	SS	Ш	Night-heron, yellow-crowned	Nyctanassa violacea violacea		BOVA
040204	SS	III	Owl, barn	Tyto alba pratincola		BOVA
040 <mark>2</mark> 70	SS	III	Wren, sedge	Cistothorus platensis		BOVA
040264	SS	IV	Creeper, brown	Certhia americana	Yes	CBC,BOVA
040180	SS	IV	Tern, Forster's	Sterna forsteri	Yes	CBC,BOVA
040364	SS		Dickcissel	Spiza americana	d un de	BOVA
040032	SS		Egret, great	Ardea alba egretta	Yes	CBC,BOVA
040366	SS		Finch, purple	Carpodacus purpureus	Yes	CBC,BOVA
040285	SS		Kinglet, golden- crowned	Regulus satrapa	<u>Yes</u>	CBC,BOVA
040112	SS		Moorhen, common	Gallinula chloropus cachinnans		BOVA
040262	SS		Nuthatch, red- breasted	Sitta canadensis	<u>Yes</u>	CBC,BOVA
040020	SS		<u>Pelican, brown</u>	Pelecanus occidentalis carolinensis		BOVA
040189	SS		Tern, Caspian	Sterna caspia	Yes	CBC,BOVA
040188	SS		Tern, sandwich	Sterna sandvicensis acuflavidus		BOVA
040278	SS		Thrush, hermit	Catharus guttatus	Yes	CBC,BOVA
040314	SS		Warbler, magnolia	Dendroica magnolia		BOVA
050110	SS		Mole, star-nosed	Condylura cristata parva		BOVA
050045	SS		<u>Otter, northern</u> <u>river</u>	Lontra canadensis lataxina		BOVA
040225		I	Sapsucker, yellow-	Sphyrapicus varius	Yes	CBC,BOVA

		bellied		
040319	I	Warbler, black- throated green	Dendroica virens	BOVA

To view All 496 species View 496

* FE=Federal Endangered; FT=Federal Threatened; SE=State Endangered; ST=State Threatened; FP=Federal Proposed; FC=Federal Candidate; FS=Federal Species of Concern; SC=State Candidate; CC=Collection Concern; SS=State Special Concern

** I=VA Wildlife Action Plan - Tier I - Critical Conservation Need; II=VA Wildlife Action Plan - Tier II - Very High Conservation Need; III=VA Wildlife Action Plan - Tier III - High Conservation Need; IV=VA Wildlife Action Plan - Tier IV - Moderate Conservation Need

View Map of All Query Results from All Observation Tables

Anadromous Fish Use Streams

N/A

Fish Impediments (3 records)

View Map of All Fish Impediments

ID	Name	River	View Map
603	BEECHWOOD DAM	FRANCE SWAMP	Yes
805	DEER LAKE DAM	TR-YARMOUTH CK	Yes
602	OLD MILL POND DAM	SKIMINO CREEK	Yes

Colonial Water Bird Survey

N/A

Threatened and Endangered Waters

N/A

Cold Water Stream Survey (Trout Streams) Summary of Recent Observations

N/A

	Scientific	Collections	
--	------------	-------------	--

Scientific Collections

			Colle			
Collection	Date Collected	Collector	Different Species	Highest TE [*]	Highest Tier	View Map
40623	Oct 16 2001	Greenlee, DMC, Paul, Karen	16		IV	Yes
40667	Oct 16 2001	Greenlee, DMC, Paul, Karen	6		IV	Yes
<u>64600</u>	Jul 10 2000	RUSS BENEDICT (PRINCIPLE PERMITTEE)	3			Yes
<u>64599</u>	Jul 8 2000	RUSS BENEDICT (PRINCIPLE PERMITTEE)	1			Yes
40613	Sep 16 1996	ADAMS, GONZALES	· 6			Yes
17766	Jan 1 1900		1			Yes
<u>18138</u>	Jan 1 1900		1			Yes
<u>19250</u>	Jan 1 1900		1			Yes
19341	Jan 1 1900		1			Yes
<u>25513</u>	Jan 1 1900		1			Yes
<u>25543</u>	Jan 1 1900		1			Yes
25579	Jan 1 1900		1			Yes
28238	Jan 1 1900	Mitchell, J. C.	1			Yes

Biologist Observations

٦٢

N/A

Г

Virginia Breeding Bird Atlas Blocks (4 records)

View Map of All Query Results Virginia Breeding Bird Atlas Blocks

٦Г

٦

http://www.vafwis.org/fwis/NewPages/VaFWIS_GeographicSelect_Options.asp?Title=VaF... 5/8/2008

٦٢

		Breedin				
BBA ID	Atlas Quadrangle Block Name	Different Species	Highest TE [*]	Highest ** Tier	Vian	
56074	Norge, CE	3			Yes	
56072	Norge, NE	2			Yes	
56086	Toano, SE	38		III	Yes	
57071	Williamsburg, NW	1	ST	II	Yes	

USFWS Breeding Bird Survey Routes

N/A

Christmas Bird Count Survey (1 records)

View Map of All Query Results Christmas Bird Count Survey

		Christma			
CBC ID	Survey Name	Different Species	Highest TE [*]		View Map
880020	Williamsburg	144	ST	Ι	Yes

Public Holdings:

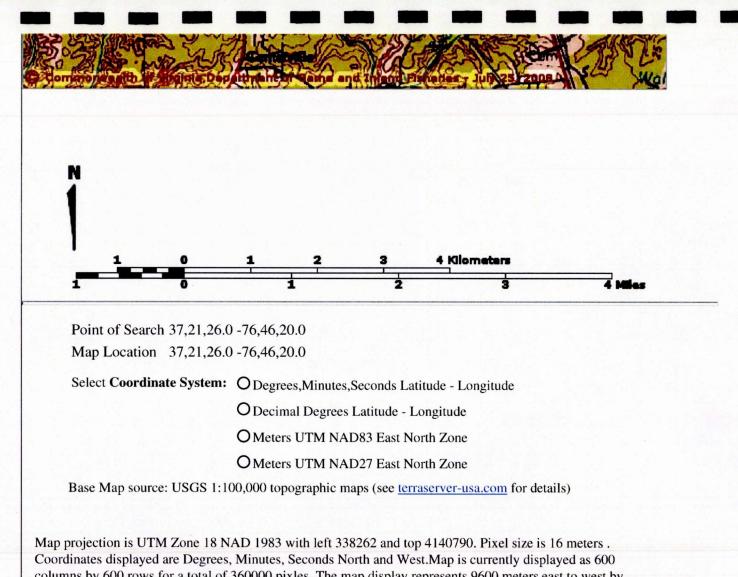
N/A

USGS 7.5' Quadrangles: Norge Toano Williamsburg Gressitt

Va. NRCS Watersheds:

UPPER YORK RIVER/POROPOTANK RIVER/QUEEN CREEK/WARE CREEK LOWER CHICKAHOMINY RIVER/MORRIS CREEK/LOWER DIASCUND CREEK JAMES RIVER/POWHATAN CREEK/GRAYS CREEK audit no. 178059 5/8/2008 2:41:13 PM Virginia Fish and Wildlife Information Service © 1998-2008 Commonwealth of Virginia Department of Game and Inland Fisheries

Black and white aerial photography aquired near 1990 and topographic maps are from the United States Department of the Interior, United States Geological Survey. Shaded topographic maps are from TOPO! ©2006 National Geographic http://www.nationa.geographic.com/topo Color aerial photography aquired 2002 is from Virginia Base Mapping Program, Virginia Geographic Information Network All other map products are from the Commonwealth of Virginia Department of Game and Inland Fisheries.


map assembled 2008-05-08 14:38:47 (qa/qc May 8, 2008 13 10 - tn=178059 dist=3218 1)

| <u>DGIF</u> | <u>Credits</u> | <u>Disclaimer</u> | Contact shirl.dressler@dgif.virginia.gov |Please view our privacy policy | © Copyright: 1998-2007 Commonwealth of Virginia Department of Game and Inland Fisheries

http://www.vafwis.org/maps/?ln=WEG&tn=178059&t=2&display_only=0&s=14&overlay_... 5/8/2008

 $http://vafwis.org/maps/?ln=WEG\&tn=192861.2\&t=2\&display_only=1\&s=14\&overlay_list=Search\&opoi=CBC*880020\&title=CBC+Williamsburg (1 of 3)7/25/2008 12:29:59 \ PMS(2) \$

coordinates displayed are Degrees, Minutes, Seconds North and West.Map is currently displayed as 600 columns by 600 rows for a total of 360000 pixles. The map display represents 9600 meters east to west by 9600 meters north to south for a total of 92.1 square kilometers. The map display represents 31501 feet east to west by 31501 feet north to south for a total of 35.5 square miles.

Black and white aerial photography aquired near 1990 and topographic maps are from the United States Department of the Interior, United States Geological Survey.

Shaded topographic maps are from TOPO! ©2006 National Geographic http://www.nationa.geographic.com/ topo

Color aerial photography aquired 2002 is from Virginia Base Mapping Program, Virginia Geographic Information Network

All other map products are from the Commonwealth of Virginia Department of Game and Inland Fisheries.

map assembled 2008-07-25 16:28:44 (qa/qc May 21, 2008 10 49 - tn=192861.2 dist=3218 I)

FILE COPYRECEIVED JUL 01 2008 WEG

COMMONWEALTH of VIRGINIA

Department of Historic Resources

2801 Kensington Avenue, Richmond, Virginia 23221

Kathleen S. Kilpatrick Director 1

Tel: (804) 367-2323 Fax: (804) 367-2391 TDD: (804) 367-2386 www.dhr.virginia.gov

June 30, 2008

L. Preston Bryant, Jr.

Secretary of Natural Resources

Matt McWhorter Williamsburg Environmental Group 5209 Center Street Williamsburg, VA 23188

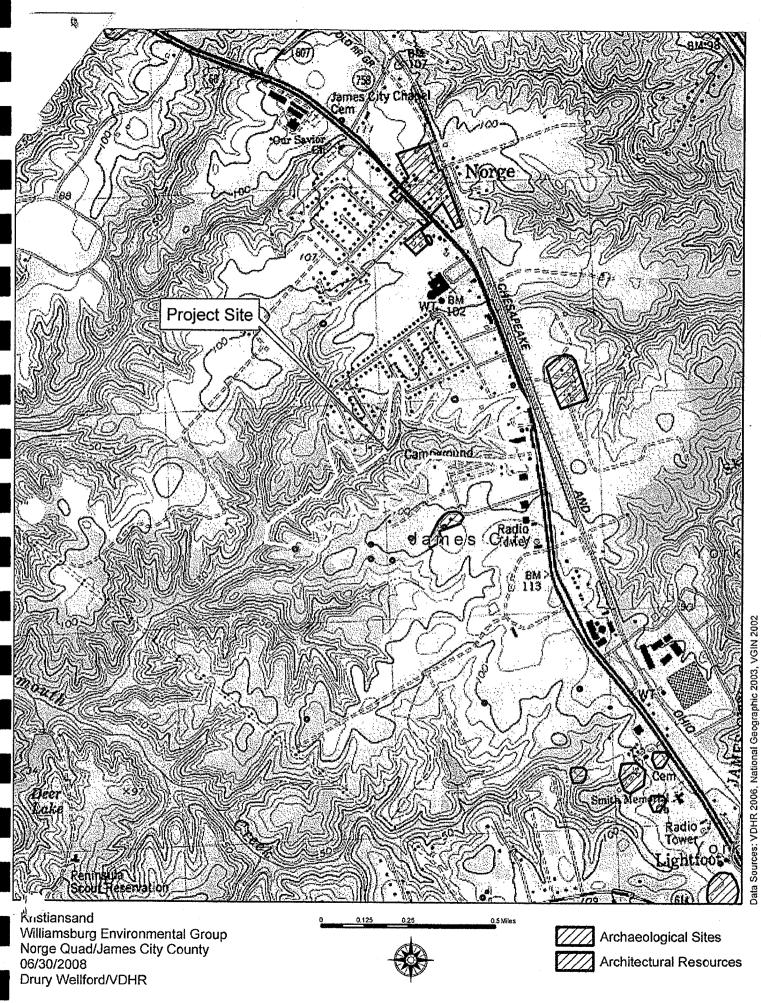
RE: Detailed Archives Search Kristiansand

Dear Mr. McWhorter:

Thank you for your recent request for information from our Archives on previously recorded archaeological and architectural resources within the area of potential effect, as delineated on your map, for the above-referenced project. Please note that your request for information from the Department of Historic Resources (DHR) Archives concerning the location of historic resources does not relieve you or your client from possible obligations under state or federal historic preservation regulations. I strongly recommend that you contact Marc Holma, Manager, DHR's Resource Services and Review Division at (804) 367-2323, extension 114, if you have any questions concerning state and federal regulatory requirements.

Enclosed are the maps showing the locations of any archaeological or architectural resources previously recorded at DHR. Since no sites or structures were found to have been previously identified in your project area, no records were copied for inclusion in this packet.

DHR serves as the official state repository on historic resources. This information has been compiled primarily by independent cultural resource consultants. DHR makes no warranty as to the fitness of the data for any purpose. The absence of historic resources in DHR records does not necessarily mean that no historic properties are present. It is advisable to check with local government planning offices for information on any properties that may meet the age and significance tests of the National Register criteria and have not yet been recorded in the DHR Archives. Also, the area in question may not have been systematically surveyed for resources, possibly necessitating a survey and submittal of that data with your Project Review application.

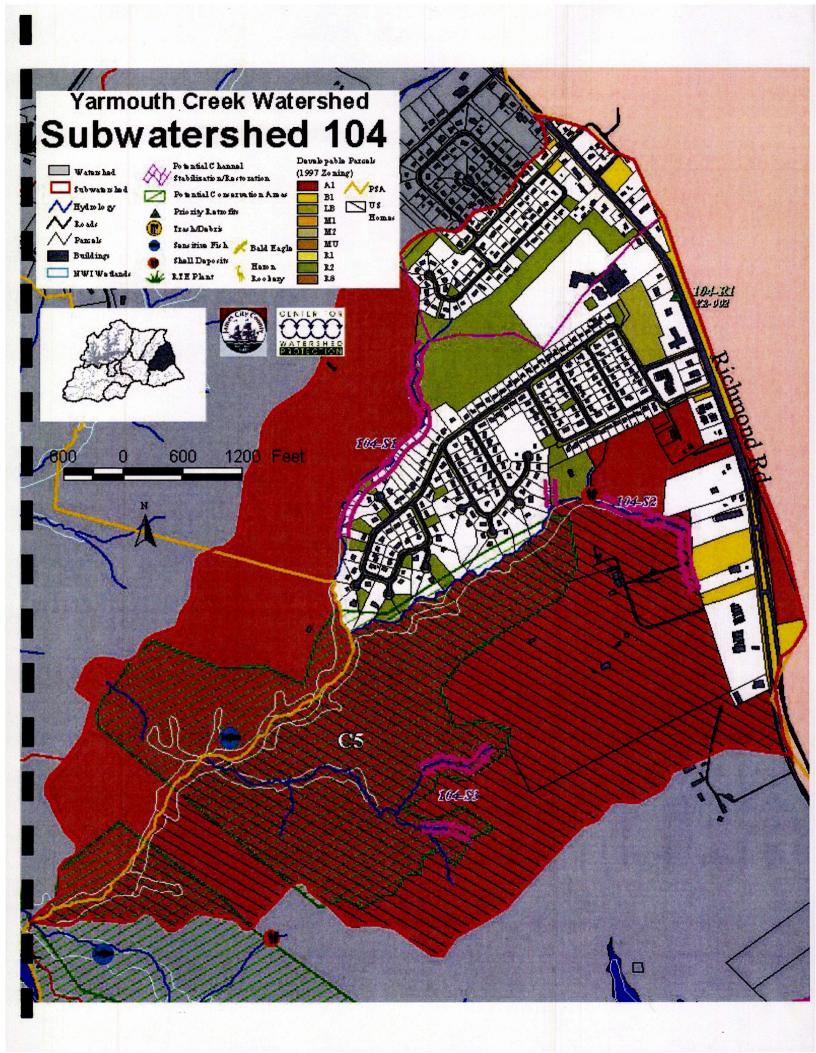

Please contact me at (804) 367-2323, extension 125, if I can be of further assistance.

Sincerely,

Ann Drury Wellford

Ann Drury/Wellford (Archives - DHR

Administrative Services 10 Courthouse Ave. Petersburg, VA 23803 Tel: (804) 863-1624 Fax: (804) 862-6196 Capital Region Office 2801 Kensington Office Richmond, VA 23221 Tel: (804) 367-2323 Fax: (804) 367-2391 Tidewater Region Office 14415 Old Courthouse Way 2nd Floor Newport News, VA 23608 Tel: (757) 886-2807 Fax: (757) 886-2808 Roanoke Region Office 1030 Penmar Avenue, SE Roanoke, VA 24013 Tel: (540) 857-7585 Fax: (540) 857-7588 Winchester Region Office 107 N. Kent Street, Suite 203 Winchester, VA 22601 Tel: (540) 722-3427 Fax: (540) 722-7535


KRISTIANSAND TRIBUTARY Preliminary Stream Cost Opinion

I

Activity	<u>Amount</u>	Cost per	Total
Design Phase			
Detailed Delineation and Confirmation	1	\$2,350	\$2,350
Permitting	1	\$6,500	\$6,500
Landowner Coordination	1	\$10,000	\$10,000
Survey Fieldwork/Design	1	\$15,000	\$15,000
Construction Plans	1	\$20,000	\$20,000
Bid Support/Specs	1	\$5,000	\$5,000
Construction Phase			
Contractor Oversight	1	\$15,000	\$15,000
Stream Enhancement (LF)	1,186	\$125	\$148,250
Stream Restoration (LF)	194	\$175	\$33,950
Replanting (Approximate Acres)	1.6	\$7,000	\$11,088
Monitoring and Reporting Phase			
As-built	1	\$6,000	\$6,000
Monitoring (Years)	3	\$5,200	\$15,600
Sub Total			\$288,738
20% contingency			\$57,748
Project Total			\$346,486
Per Linear Foot (1,380 LF)			\$245

NOTE: All values are approximate, subject to change, and based on preliminary site analyses in absence of detailed inventories and design.

NOTE: Proposed BMP retrofits are not included in the Stream Cost Opinion.

Subwatershed 104

Overall Characterization

Subwatershed 104 is currently in the SENSITIVE category at 9.0% impervious cover and under the current zoning was projected to have a buildout imperviousness of 11.6%, which would shift its classification to IMPACTED. Recently. a significant portion of the subwatershed was rezoned from agricultural to residential, which shifted the future impervious cover projection to 19.3%. subwatershed moderately Currently, the is

developed with residential and commercial areas in the upper portion. The upper western tributary has been impacted by uncontrolled stormwater from an older residential development, and the stream appears to be straightening as well as carrying a an excess sediment load. The eastern and lower portions of the subwatershed have excellent stream conditions. A fish survey below the confluence of the two upper tributaries showed eight fish species including the sensitive brook lamprey. Good quality floodplain forest exists here as well as the shell-marl ravine forest, though the shell areas have been affected by the spread of invasive Nepal microstegium associated with the sewer line. Upland areas may provide habitat for the rare small whorled pogonia, which was recently located in this subwatershed by Williamsburg Environmental Group. This area contains relatively mature contiguous forest.

General Characteristics

Drainage Area Length of Mapped Streams 860 acres3.78 miles

Current Land Use and Stream Classification in Subwatershed 104

1996 Impervious Cover Initial Stream Classification Current Stream Condition 9.0% Sensitive Good

Future Land Use and Stream Classification in Subwatershed 104

Buildout Impervious Cover Projected Stream Classification Developable Area Developable Area % 19.3% Impacted 573.6 acres 67%

Conservation Areas in Subwatershed 104

Existing RPA wetland area	24 acres
Existing RPA wetland %	3%

Yarmouth Final Watershed Plan

Contiguous Forest Yes, 200 acre forested plot Presence of RTE species: A small whorled pogonia population is located in the uplands and there are shell deposits indicative of the shell-marl ravine forest located in the upper watershed. Conditions in the eastern tributary are affected by the invasive Nepal microstegium.

Wetlands (from NWI): 42.7 acres of wetlands (5% of subwatershed), mostly riparian. High quality wetlands associated with the floodplain occur along with beaver dams in the lower portions of the subwatershed.

Other Conservation Areas: None found

Table	Table 104-1. Priority Conservation Areas in Subwatershed 104					
Rank ID Approx. Area* (acres) Total Developable		Description	Score	Management Recommendations		
5 out of 8	C5	190	140	Subwatershed 104; sensitive stream, contiguous forest, shell-marl	54	Targeted for development; RPA protection for all first order streams, BSD

*These are approximate areas calculated using GIS and rounded to the nearest tenth. Total area represents the total acreage within the conservation area boundary. The developable area within those conservation areas was calculated by subtracting unbuildable land and built-out land from the total area. Unbuildable land included the NWI wetlands, open water, the existing RPAs (not including RPA buffer), stream valleys (a 100-foot buffer on either side of all streams), and slopes greater than 25% (derived from 5-foot contour lines). Because this estimate was based on limited data and certain assumptions were made about how to estimate this area, it should only be used as a planning tool only and not as an actual guide for development.

General Stream Conditions in Subwatershed 104

Habitat Assessment: The upper western tributary has been impacted by uncontrolled stormwater from residential development, and the stream appears to be straightening as well as carrying a large sediment load. The eastern and lower portions of the subwatershed have good stream conditions. A fish survey below the confluence of the two upper tributaries showed eight fish species including the sensitive brook lamprey.

Stormwater Management in Subwatershed 104

There is an opportunity to retrofit the development on the western tributary to provide channel protection and limit downstream impacts of stormwater runoff. Another opportunity for stormwater retrofitting may be to expand the capacity of an infiltration basin to provide more storage.

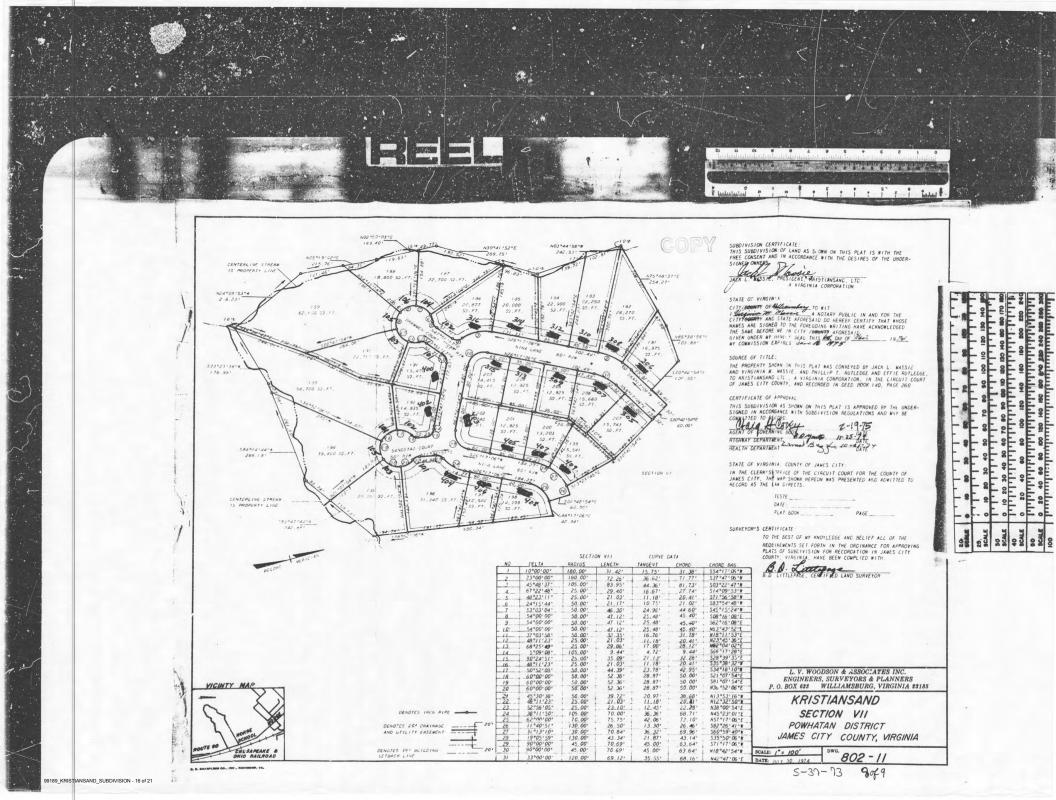
Table 104-2. Retrofit Opportunities in Subwatershed 104					
ID	Facility Type	Description	Comments	Priority	
104-R1	Infiltration Basin	Consider adding bioretention elements to enhance the facility. Mulch the base of the facility, and incorporate a variety of plants.	This facility is currently recorded as a dry pond.	Low	

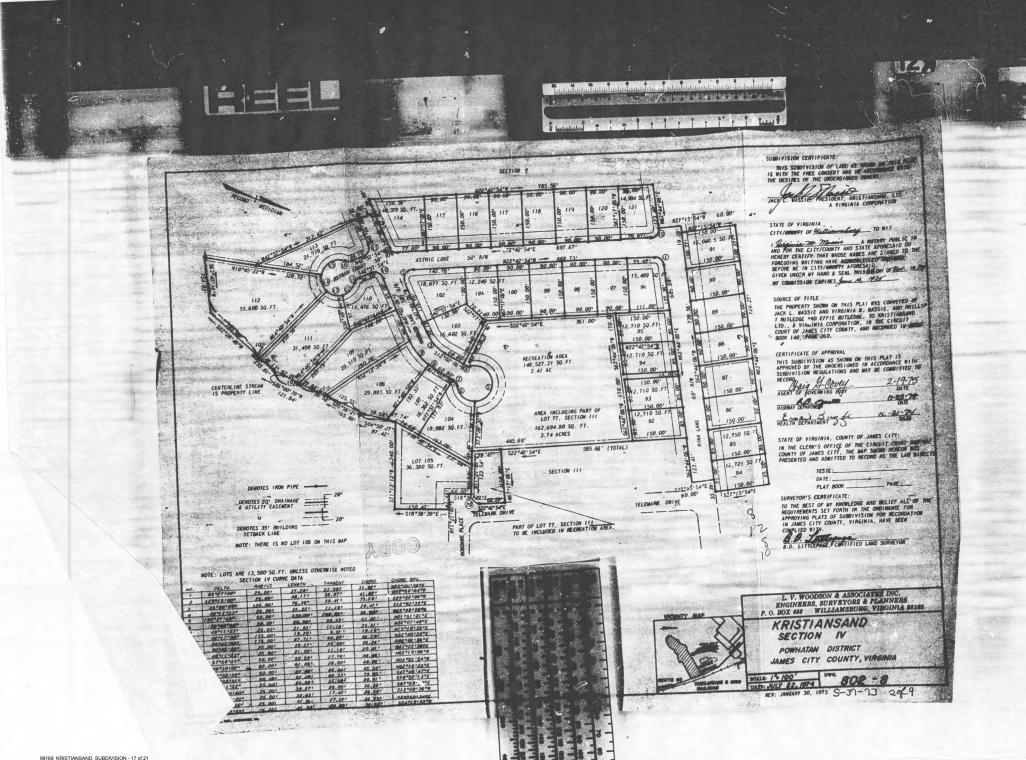
Stream Restoration/ Channel Stabilization in Subwatershed 104

There is the potential for several stream stabilization and one potential stream restoration project in Subwatershed 104. The stream restoration project is associated with the degraded western tributary. However the source of the stormwater that is degrading the channel is undetermined. Treatment of the stormwater prior to restoration should be a prerequisite for this project. The bioengineering concept for the restoration project is located in Section 3 Watershed Recommendations. Descriptions of the potential channel stabilization projects are located in Table 104-3.

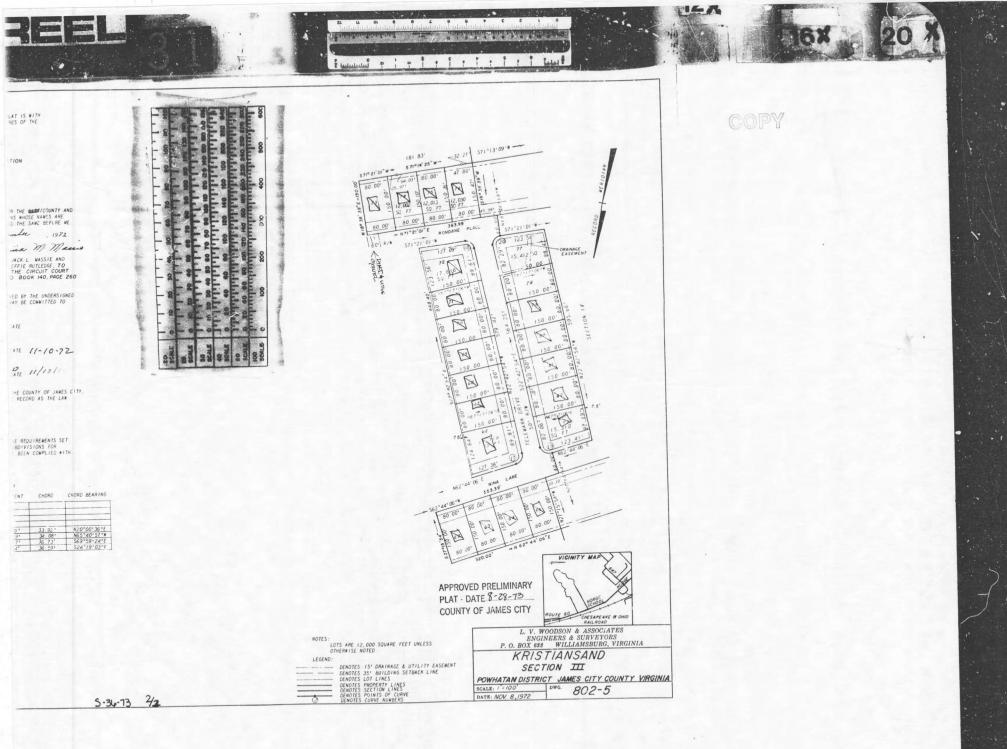
Table 1 Subwater	04-3. Stream Restoration/ Channeshed 104	nel Stabilization Opportu	nities in	
Site	Description	Type of Effort	Priority	
104-S1	Reach of stream adjacent to the west side of the Kristansand neighborhood in Subwatershed 104	Stream restoration -Should be combined with a retrofit, habitat and stability should be restoration goals.	Medium	
104-S2	Two reaches on the south side of Kristansand neighborhood experiencing streambank erosion and headcutting	Channel stabilization	Medium	
104-S3	Two small headwater channels with active headcuts in subwatershed 104 downstream of the proposed US Homes development	Channel stabilization	Medium	

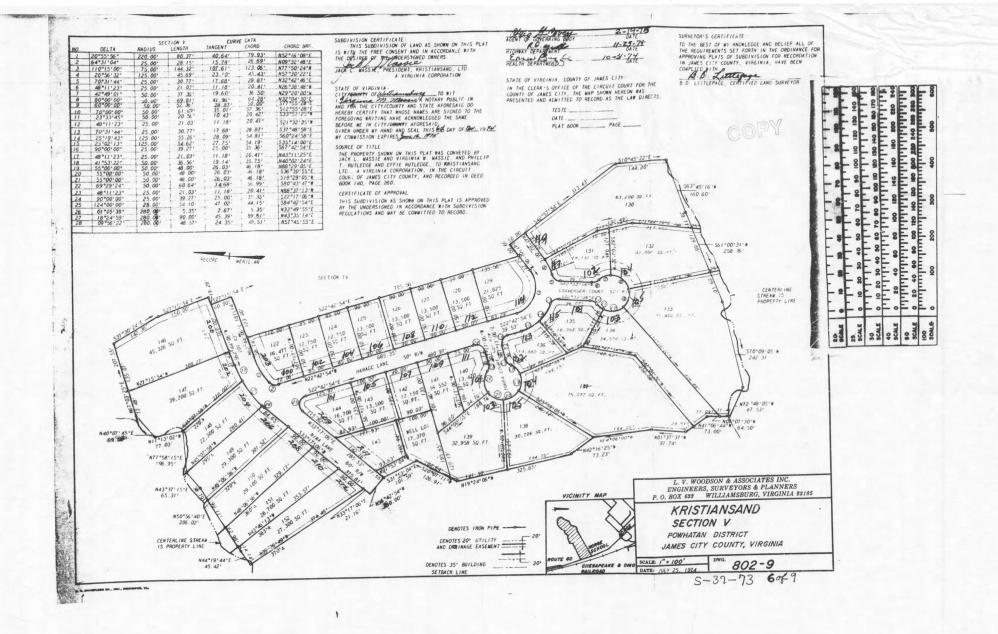
7. Reports

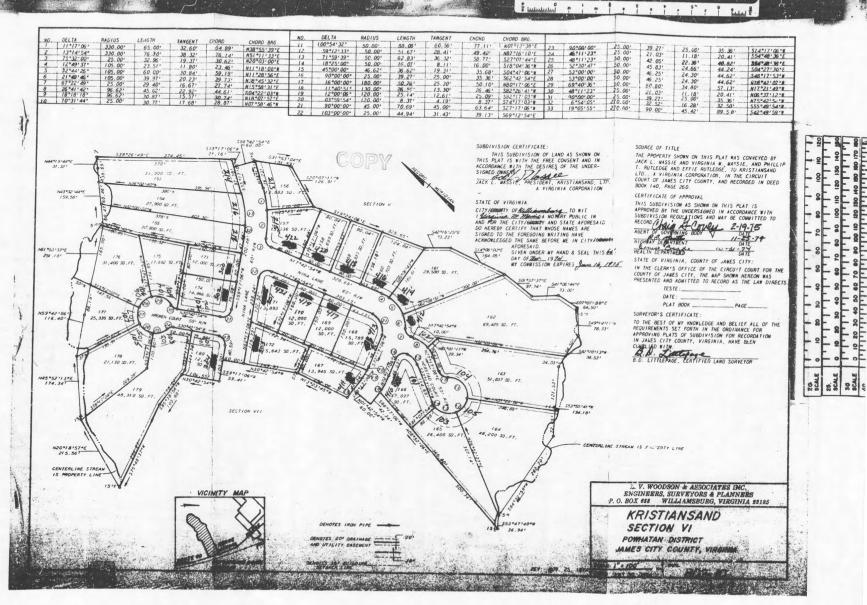

8. Specifications and Engineering Calculations


9. Permitting

10. Inspections


11. Correspondence


12. Miscellaneous



LL OL 21 6 G

VILATING STAT

A 164 140

2

-

200